

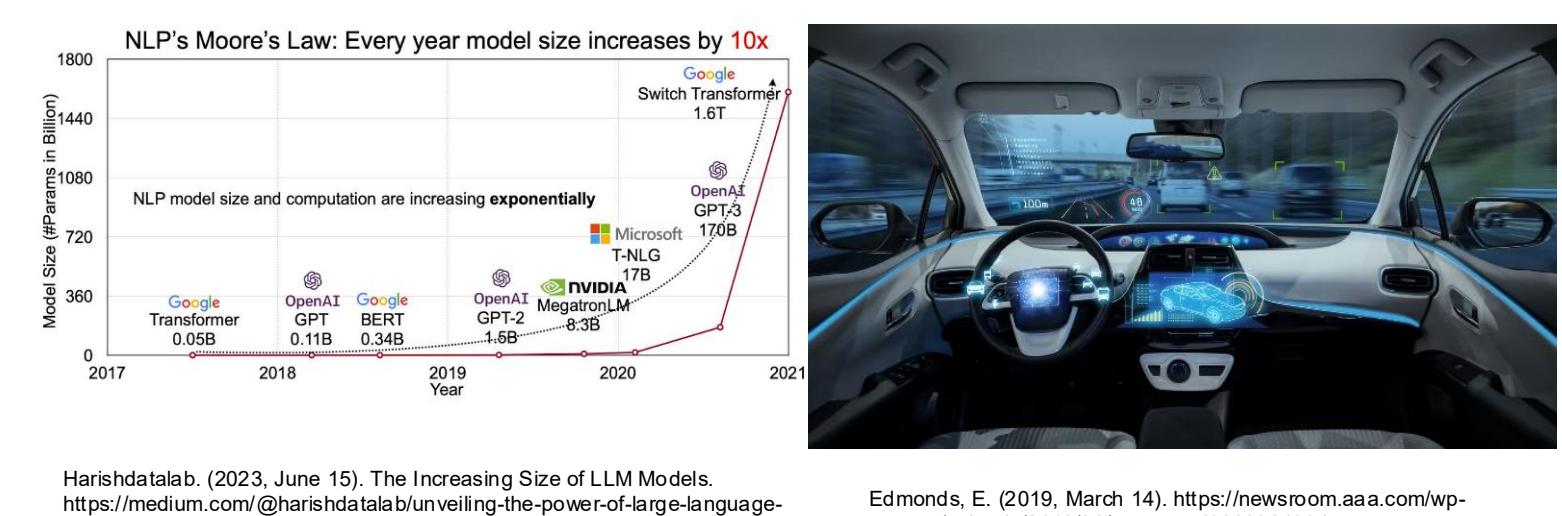
Introduction

Need for Model Compression

- In recent years, neural networks have grown drastically in complexity with billions or trillions of parameters.
- Reducing model size is crucial for scenarios demanding fast re-training and inference on resource-constrained edge devices.

Uses of Model Compression

- Large language models require substantial computing resources to accommodate for their large model sizes
- Model compression allows for fast real-time decision making in self-driving cars.

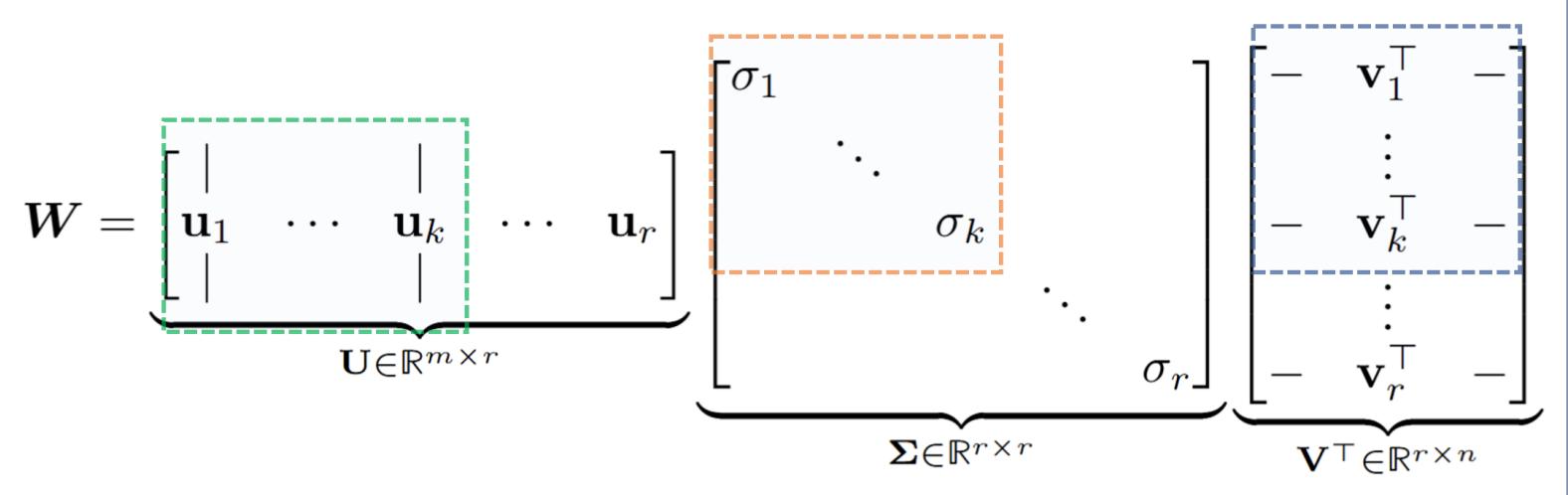


Low-Rank Factorization and Truncation

Given \mathbf{W} an $m \times n$ matrix, its Singular Value Decomposition (SVD) is:

$$\mathbf{W} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T,$$

- \mathbf{U} is an orthogonal $m \times m$ matrix whose columns are the left singular vectors.
- $\mathbf{\Sigma}$ is an $m \times n$ diagonal matrix with singular values $\sigma_1 \geq \dots \geq \sigma_r > 0$ on the diagonal (denoted as singular values and r is the rank of \mathbf{W} and $r \leq \min\{m, n\}$) and the rest entries are all zero.
- \mathbf{V}^T is the transpose of an orthogonal $n \times n$ matrix whose rows are the right singular vectors.



Truncation: The full-rank matrix \mathbf{W} has rank $r = \min\{m, n\}$. With a chosen $k \leq r$, we obtain the corresponding low-rank matrix $\mathbf{W}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$, where \mathbf{U}_k , $\mathbf{\Sigma}_k$, \mathbf{V}_k are the top- k components truncated from \mathbf{U} , $\mathbf{\Sigma}$, and \mathbf{V} .

$$\mathbf{W}_k = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_k \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T & & \\ & \ddots & \\ & & \mathbf{v}_k^T \end{bmatrix} \quad \mathbf{U}_k \in \mathbb{R}^{m \times k}, \mathbf{\Sigma}_k \in \mathbb{R}^{k \times k}, \mathbf{V}_k^T \in \mathbb{R}^{k \times n}$$

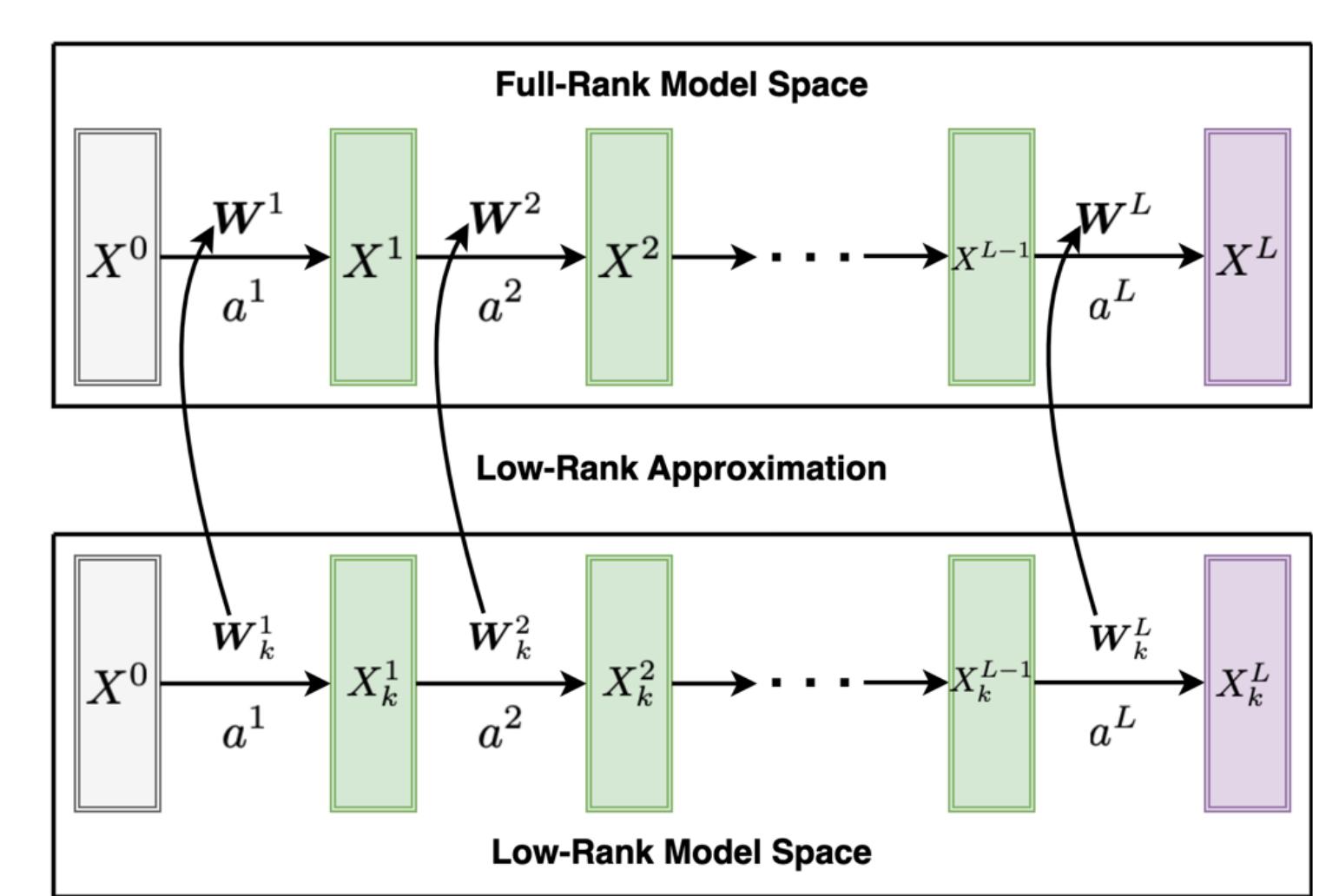
Framework

Uniqueness of Our Approach

- Low-rank training incorporates various penalty terms in the loss function to reduce the rank of weight matrices while preserving high accuracy.
- Three aspects considered in optimal rank selection:
 - Independent** vs. Dependent Layer-Wise Rank Selection
 - Theory-Driven** vs. Heuristic Rank Search Strategy
 - During-Training** vs. Post-Training Rank Selection.
- Our approach includes independent layer-wise rank selection, is theory-driven, and conducts rank selection during training; no previous works include all three optimal aspects.

Approach	Layer-Wise Rank Selection (Independent vs. Dependent)	Search Strategy (Theory-Driven vs. Heuristic)	Rank Selection Timing (During vs. Post-Training)
[Cheng et al., 2020]	Independent	Heuristic	Post-training
[Kim et al., 2020]	Independent	Theory-Driven	Post-training
[Ito et al., 2021]	Independent	Heuristic	Post-training
[Sobolev et al., 2022]	Independent	Heuristic	Post-training
[Xiao et al., 2023]	Independent	Heuristic	Post-training
[Wang et al., 2023]	Independent	Heuristic	During-Training
[Cao et al., 2024]	Independent	Heuristic	Post-training
Ours	Independent	Theory-Driven	During-Training

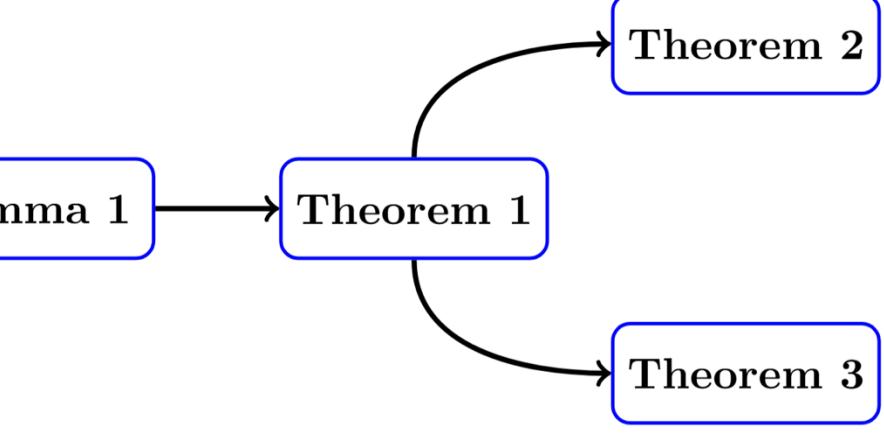
Mathematical Formulation of Neural Networks



- Neural network of L layers denoted by $f_{\mathbf{W}}(\cdot)$ and parameterized by $\mathbf{W} = \{W^1, W^2, \dots, W^L\}$.
- $X^l = a^l(W^l X^{l-1})$ for $l = 1, 2, \dots, L$, where W^l , a^l , and X^l represent the weight matrix, non-linear activation function, and output of the l -th layer.

Our Theoretical Findings

Research Problem: Design a theory-driven approach to search for truncations (W_1^1, \dots, W_k^L) of (W^1, \dots, W^L) with layer wise ranks (k^1, k^2, \dots, k^L) to achieve optimal compression and accuracy concurrently.



Lemma 1 (Eckart–Young–Mirsky Theorem [Golub et al., 1987]). Let $\mathbf{W} \in \mathbb{R}^{m \times n}$ be a matrix with rank r and let $\|\cdot\|_2$ denote the spectral norm. Following the same definitions in Proposition 1, we define \mathbf{W}_k to be the best rank- k approximation of \mathbf{W} in the spectral norm, i.e., $\mathbf{W}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T = \sum_{i=1}^k \sigma_i \mathbf{U}_{:,i} \mathbf{V}_{i,:}^T$, where \mathbf{U}_k , $\mathbf{\Sigma}_k$, and \mathbf{V}_k are the top- k components truncated from \mathbf{U} , $\mathbf{\Sigma}$, and \mathbf{V} , respectively. Then, we have $\|\mathbf{W} - \mathbf{W}_k\|_2 = \sigma_{k+1}$.

How Low-Rank Truncation Impact the Output

Theorem 1 (The output difference bound under rank- k approximation for L -layer neural networks). Let a^l be the activation function for the l -th layer, where a^l is ρ_l -Lipschitz and satisfies $a^l(0) = 0$ for all $l \in [1, L]$. Let \mathbf{W}_l be the full-rank matrix at layer l , and let \mathbf{W}_l be its rank k^l approximation from keeping only the top k^l singular values in the SVD decomposition of \mathbf{W}_l . Let σ_i^l denote the i th singular value of \mathbf{W}_l , \mathbf{X}^0 be the initial input vector, and \mathbf{X}^l and \mathbf{X}_k^l be the output vectors at the l -th layer after applying \mathbf{W}^l and \mathbf{W}_k^l , respectively. Then, the output difference $\|\mathbf{X}^L - \mathbf{X}_k^L\|_2$ from a rank- k approximation over an L -layer feed-forward network is upper-bounded by $\left(\prod_{l=1}^L \rho_l \sigma_1^l\right) \left(\sum_{l=1}^L \frac{\sigma_{k^l+1}^l}{\sigma_1^l}\right) \|\mathbf{X}^0\|_2$.

How Low-Rank Truncation Impact the Loss Error

- Let $X_i^L = f_{\mathbf{W}}(X_i^0) \in \mathbb{R}^C$ and $X_{i,k}^L = f_{\mathbf{W}_k}(X_{i,k}^0) \in \mathbb{R}^C$ be the output logits after feeding an input X_i^0 sampled from the training dataset $\mathcal{D}^{tr} = \{X_i^0, y_i\}_{i=1}^R$, from the full-rank parameter space $\mathcal{W} = \{\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^L\}$ and low-rank parameter space $\mathcal{W}_k = \{\mathbf{W}_k^1, \mathbf{W}_k^2, \dots, \mathbf{W}_k^L\}$, respectively.
- Let B be a constant such that $\|X_i^0\|_2 \leq B$ for all $i \in [1, R]$.

Theorem 2 (The loss error bound under rank- k truncation in classification problems). Following the definitions in Theorem 1, we consider a C -class classification problem. We let $z_i = \text{softmax}(X_i^L)$ and $z_{i,k} = \text{softmax}(X_{i,k}^L)$, where softmax is the softmax function. Consider the cross-entropy function $g(z, y) = -y^T \log(z)$ and the loss functions be $L(\mathbf{W}; X_i^0) = g(z_i, y_i)$ and $L(\mathbf{W}_k; X_i^0) = g(z_{i,k}, y_i)$. We set $\sigma_{k^l+1}^l$ and δ such that $\frac{\sigma_{k^l+1}^l}{\sigma_1^l} < \delta$, $\forall l \in [L]$. Then, for $\forall \epsilon > 0$, $\exists \delta = \frac{\epsilon}{\sqrt{2}BL(\prod_{l=1}^L \rho_l \sigma_1^l)}$ such that $|L(\mathbf{W}; \mathcal{D}^{tr}) - L(\mathbf{W}_k; \mathcal{D}^{tr})| < \epsilon$.

Theorem 3 (The loss error bound under rank- k truncation in regression problems). Following the definitions in Theorem 1, we consider a regression problem with loss function $g(z, y) = \|z - y\|_2$. Let $L(\mathbf{W}; X_i^0) = g(X_i^L, y_i)$ and $L(\mathbf{W}_k; X_i^0) = g(X_{i,k}^L, y_i)$. We set $\sigma_{k^l+1}^l$ and δ such that $\frac{\sigma_{k^l+1}^l}{\sigma_1^l} < \delta$, $\forall l \in [1, L]$. Then, for $\forall \epsilon > 0$, $\exists \delta = \frac{\epsilon}{BL(\prod_{l=1}^L \rho_l \sigma_1^l)}$ such that $|L(\mathbf{W}; \mathcal{D}^{tr}) - L(\mathbf{W}_k; \mathcal{D}^{tr})| < \epsilon$.

Our Algorithms

- Calculating the Lipschitz constant of layer-wise parameters is computationally expensive in many CNN models, preventing the extension of our theoretical findings from simple feed-forward networks to complex CNNs.
- The rank selection is integrated in low-rank SVD training.
- The low-rank SVD training loss function is

$$L(\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}; \mathcal{D}^{tr}) = \underbrace{L_T(\mathbf{U}, \mathbf{\Sigma}, \mathbf{V})}_{\text{Training Loss}} + \lambda_O \underbrace{L_O(\mathbf{U}, \mathbf{V})}_{\text{Orthogonality Loss}} + \lambda_R \underbrace{L_R(\mathbf{\Sigma})}_{\text{Regularization Loss}}$$

- For the low-rank regularization loss, we consider the Nuclear norm $\|\mathbf{W}^l\|_1$ and the Hoyer norm $\|\mathbf{W}^l\|_1/\|\mathbf{W}^l\|_F$.

Algorithm 1: Proposed Rank Selection Algorithm

Input: full-rank parameters \mathcal{W} , loss error tolerance ϵ , stop searching precision $\Delta\delta$

Output: low-rank parameters \mathcal{W}_k

```

1 Function RankSelection( $\mathcal{W}$ ,  $\epsilon$ ,  $\Delta\delta$ ):
2    $\mathcal{W}_k \leftarrow \emptyset$ ;
3   for each  $\mathbf{W}^l \in \mathcal{W}$  do
4      $floss \leftarrow L_T(\mathbf{W}; \mathcal{D}^{tr})$ ;
5      $l \leftarrow 0$ ;  $u \leftarrow 1$ ;  $\delta \leftarrow (l + u)/2$ ;
6     while  $|l - u| \geq \Delta\delta$  or  $|floss - loss| \geq \epsilon$  do
7        $\mathcal{W}_k \leftarrow \text{SVDLowRankApprox}(\mathcal{W}, \delta)$ ;
8        $loss \leftarrow L_T(\mathbf{W}_k; \mathcal{D}^{tr})$ ;
9       if  $|floss - loss| < \epsilon$  then
10          $l \leftarrow \delta$ ;  $\delta \leftarrow (l + u)/2$ ;
11       else
12          $u \leftarrow \delta$ ;  $\delta \leftarrow (l + u)/2$ ;
13   return  $\mathcal{W}_k$ ;
```

Algorithm 2: Standard SVD Low-Rank Approximation

1 Function SVDLowRankApprox(\mathcal{W} , δ):

```

2    $\mathcal{W}_k \leftarrow \emptyset$ ;
3   for each  $\mathbf{W}^l \in \mathcal{W}$  do
4      $\mathbf{U}^l, \mathbf{\Sigma}^l, \mathbf{V}^l \leftarrow \text{SVD}(\mathbf{W}^l)$ ;
5      $k^l \leftarrow \text{argmax}_k \{k\sigma_k^l / \sigma_1^l \geq \delta\}$ ;
6      $\mathcal{W}_k^l \leftarrow \mathbf{U}_k^l \mathbf{\Sigma}_k^l \mathbf{V}_k^l$ ;  $\mathcal{W}_k \leftarrow \mathcal{W}_k \cup \mathcal{W}_k^l$ ;
7     //  $\mathbf{U}_k^l, \mathbf{\Sigma}_k^l, \mathbf{V}_k^l$  are top- $k^l$  vectors
     // truncated from  $\mathbf{U}^l, \mathbf{\Sigma}^l, \mathbf{V}^l$ 
8   return  $\mathcal{W}_k$ 
```

Algorithm 3: Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm

Input: full-rank parameters \mathcal{U}, \mathcal{V} , loss error tolerance ϵ , stop searching precision $\Delta\delta$, training epoch E

Output: low-rank parameters $\mathcal{U}_k, \mathcal{V}_k$

```

1 Initialize parameters  $\mathcal{U}, \mathcal{V}, \mathcal{V}_k$ ;
2  $e \leftarrow 1$ ;
3 while  $e \leq E$  do
4   Update  $\mathcal{U}, \mathcal{V}$  based on loss function  $L(\mathcal{U}, \mathcal{V}, \mathcal{V}_k)$  with an appropriate optimizer and extract the learning loss  $L_T(\mathcal{U}, \mathcal{V}, \mathcal{V}_k)$ ; //  $L_O(\mathcal{U}, \mathcal{V})$  and  $L_R(\mathcal{V}_k)$  are not used in the next-step rank selection
5    $\mathcal{U}_k, \mathcal{V}_k \leftarrow \text{RankSelection}(\mathcal{U}, \mathcal{V}, \epsilon, \Delta\delta, L_T(\mathcal{U}, \mathcal{V}, \mathcal{V}_k))$ ;
6    $\mathcal{U}, \mathcal{V} \leftarrow \mathcal{U}_k, \mathcal{V}_k$ ; // Use truncated models for the next round of training
7    $e \leftarrow e + 1$ ;
8 return  $\mathcal{U}_k, \mathcal{V}_k$ ;
```

Proof-of-Concept