Integrating Independent Layer-Wise Rank Selection with Low-Rank SVD Training for Model Compression:
A Theory-Driven Approach
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drastically in complexity with billions or trillions of 'for truncatllor;S ( N ,) of ( J ) Wlth. [Lemma 1]—>[The0rem 1]
oarameters. layer wise ranks (k' k%,..., k") to achieve optimal compression and
» Reducing model size is crucial for scenarios accuracy concurrently. \O[Theorem 3]
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Lemma 1 (Eckart—Young—Mirsky Theorem [Golub et al., 1987]). Let W € R™*™ be a matrix with rank B (a) Full-rank model S‘_)_a(_:é (6_ 0)
Uses of Model Compression r and let || - ||o denote the spectral norm. Following the same definitions in Proposition 1, we define W), on Training Dataset on Testing Dotaset
. Large language models require substantial to be the best rank-k approximation of W' in the spectral norm, i.e., Wj, = Uy, EkaT = Zle JiU;,i‘/i?:,
computing resources to accommodate for their large where Uy, 331, and Vi, are the top-k components truncated from U , 33, and V', respectively. Then, we have
model sizes W — Wiy = okt

* Model compression allows for fast real-time decision

. .. How Low-Rank Truncation Impact the Output
making in self-driving cars.

Theorem 1 (The output difference bound under rank-k approximation for L-layer neural networks). Let a' (b) Low-rank model space (¢ = 0.28, § = 0.025)
be the activation function for the l-th layer, where a' is p;-Lipschitz and satisfies ' (0) = 0 forall | € [1, L. Decison Boundary
Let W be the full-rank matrix at layer |, and let W be its rank k' approximation from keeping only the

top k' singular values in the SVD decomposition of W;f: Let o} denote the ith singular value of W;, X"
be the initial input vector, and X' and X é be the output vectors at the l-th layer after applying W' and
W, respectively. Then, the output difference HX L X ,f H , Jrom a rank-k approximation over an L-layer
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Low-Rank Factorization and Truncation

(¢) Low-rank model space (¢ = 0.33, d = 0.03)

Given W an m X n matrix, its Singular Value Decomposition How Low-Rank Truncation Impact the Loss Error A visualization of the decision boundaries on the

D) is:
(SVD)1s ~ training dataset (left column) and testing dataset
W =UXV I 0 C I 0 C ‘ _ . (right column) for different rank selections.
e Let X;” = fiw(X;) € R¥ and X, = fw, (X ) € R™ be the output logits after feeding an input
e U is an orthogonal m X m matrix whose columns are the 0 . ’ . 0 R « We conduct a pilot study using a simple 3-layer
- -’ sampled from the training datase — ’ y; +._ ., from the full-rank parameter space —
left singular vectors. X; pled from the t g dataset D' = { X, y; };_,, from the full-rank p ter space W feedforward neural network for a ternary
« s an m x n diagonal matrix with singular values oy > (Wt W2 .. WHZE} and low-rank parameter space Wy = {WL, W2 ... W] respectively. classification problem.
.-+ > o, > 0 on the diagonal (denoted as singular values . 0] <« :  Validate the feasibility of identifying 0 based on our
and r is the rank of W and r < min{m,n}.) and the rest Let 5 be a constant such that HX?’ ‘2 < Biorallz € [1’ R]' derived € — ¢ and determining the optimal (&', k>, ..., k")

entries are all zero.
« VT is the transpose of an orthogonal n X n matrix whose Theorem 2 (The loss error bound under rank-% truncation in classification problems). Following the def- Experimental Results

rows are the right singular vectors. initions in Theorem 1, we consider a C-class classification problem. We let z; = softmax (X &~ ) and
—— 0of/o$ (full-rank training) — Testinggmzzseer;?r
e Y A Zi k. = softmax (X f’k> where softmax is the softmax function. Consider the cross-entropy function S el 1 g S ——
’ [ truncated singular values =| —=- Low-rank model training loss L(Wy; D”)
| | E 9(z,y) = —y" log(z) and let the loss functions be L (W; X}) = g(z;,y;) and L (Wg; X)) = g(2i k., ¥i)- v 2 oo 1l S5 Lo g
W=lua - u;- - u Ok i o! T o = oo
| | . e W l k?l +1 - € | Apply truncation -
d ) 5 : e set 0,, . and 0 such that =7~ < 0, V1 € |L|. Then, forVe > 0, 40 = - such that I
Uckmxr ol | v - v 71 V2BL(ITi, p1o1)
— N r J . tr . tr 0.0 | = ; . : : \ SaRy
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Truncation: The full-rank matrix W has rank » = min{m, n}. — ]
With a chosen £ < r, we obtain the corresponding low-rank . : : :
. = b 5 Theorem 3 (The loss error bound under rank-£ truncation in regression problems). Following the def- :
matrix Wy = U2V, , where Uy, 3., V. are the top-k£ com- S : , _ ) : L1 L1
ponents truncated from U, 3, and V. initions in Theorem 1, we consider a regression problem with loss function g(z,y) = ||z —yll,. Let ““* — v | * — fwrncvanns
0 L 0 L l 71
—O-]_ i -— VI —- L (W’ X?v ) o 'g (XZ 7 y?-:) and L (ij X?_: ) - g (X/i,k} y?_;) . We Set Jkl_'_l and (5 SuCh that G_:ll < 5} Training loss error bound € Training loss error bound ¢ Training loss error bound &
€ tr tr (a) The 1°" layer (b) The 8" layer (¢) The 15" layer
W,=|u - uy 3 : VIe|l,L|. Then, forVe > 0,36 = s — such that |L (W;D'") — L (Wyg; D")| < e
) .T BL (lel P10 ) Correlation between training loss error and rank selection on ResNet-20 model
\ 7 L O-k o _— Vki __ ResNet-20 ResNet-32 ResNet-56 ResNet-110
. k N 7\ - Approach Test AccT CR] TestAccT CR| TestAcclT CRJ] TestAcct CRJ
Uk;ElRmX v~ ~~
ZkE[Rk:Xk VkTE[Ran

[Yang et al., 2020] 0.887 0202 0893 0367 0924 0485 0924 0511

A (Channel, Squared Hoyer)
A I h [Yang et al.. 20201 0.866 0.242 0.889 0.413 0918 0.522 0.917 0.543

u r rl m (Spatial, Squared Hoyer)
[Wang er al., 2023] 0.822 0.337 0.834 0.398 0.844 0.441 0.849 0462

Ours

(Channel, Nuclear) 0.870 0.155 0.879 0.312 0.892 0.422 0.892 0.445
Ours :
] . . . . _ . . . . . (Spatial, Nuclear) 0.867 0.221 0.873 0.319 0.899 0.438 0.898 0.465
Uniqueness of Our Approach Calculafung the LIpSChItZ constant of Iayer wise parameter_s Is computationally expensive in many CNN models, O o aew o oms e oms o
preventing the extension of our theoretical findings from simple feed-forward networks to complex CNNSs. oo Om T oz o o oo oaw ooz 0des
. . . . patial, Squared Hoyer ) ) ) ) ' ' ) )
’ LOW-rank tralnlng IﬂCOFpOrateS various penalty * The rank Se|eCtIOn |S |ntegrated |n |OW-I’ank SVD tl’alnlng Overall performance comparisons on CIFAR-10 dataset
terms in the loss function to reduce the rank of . o ReNeL TS ReNeis0
* The low-rank SVD training loss function is Approach TesiAcc] CRT TeAccT CRJ

weight matrices while preserving high accuracy. [Yang ef al 2020] 0684 0204 0691 0392

. . . . [ (Channel, Squared Hoyer)
- Three aspects considered in optimal rank selection: LUZV;D")=LrU,E,V)+ o Lo, V) +Ar Lgr(%) g 001 G0 0 ogrs o
. ~ 7 (. ~ 7 R/—/ ’ -
° |ndependent VS. Dependent Layer-Wise Rank Training Loss Orthogonality Loss Regularization Loss (Channel, %uared Hoyery ~ 0690 0181 0.696  0.366
Se |eCt|O n (Spatial, Squa}ed Hoyer) 0.672 0.207 0.681 0.398
. T : : : l ) .
 Theory-Driven vs. Heuristic Rank Search » For the low-rank regularization loss, we consider the Nuclear norm ||[W!||; and the Hoyer norm [|[W"|[1/[[W"||F. Overall performance comparisons on ImageNet dataset
Strate .
. gyT . S, Conclusions
 During-Iraining vs. Post-1rainin an - . . ; .
Selectgiion d J Algorithm 1: Proposed Rank Selection Algorithm Algorithm 2: Standard SVD Low-Rank Approxima- - In-depth theoretical analysis that quantitatively
- . . Input: full-rank parameters W, loss error tolerance e, tion i} i i
» Our approach includes independent layer-wise rank P P o A 1 Function SVDLowRankApprox (W, 9) : measures how low-rank approximation affects
) _ _ stop searching precision Ad training losses
Select!on, IS t.heory-.drlven, and C(.)ndUCtS ran.k Output: low-rank parameters Wy 2 Wi < O  Rank selection enabled low-rank training inspired
selection during training; no previous works include 1 Function RankSelection (W, €, Ad): 3 for each W' € W do by our theoretical findings 9 P
: I v y/I ly. :
all three optimal aspects. 2 floss < Ly (W; D™ ) ’ ULY, V" SvD(W');  Our algorithm, paired with channel decomposition
_ . — [ 0;u< 1,0 (I+u)/2; 5 k' ¢ argmaxy {k|oj /oy > 6}; J b "
Approach Layer-Wise Rank Selection Sear'ch Strategy o Rapk Selection Tlm'm_g 3 . ’ ’ ’ k k 1 = ? and HOyer regularlzatlon aChleveS better reSUItS
o s Dpeden) (T D Feutsl)_(Cun . o i) s | while|l —u| > A or[floss — loss| > ¢ do : Wi« ULSLV Wi + Wi, UW]; s animimgivingifadon
imceta.,.’ ependen eor —hriven 05;— raining . n r Vl = = = r | .
[éo eral.l, 2%)%21?] IEdgper?der‘it ThHlei?tic gost—%raining 5 Wk A SVDLOWRankApprOX(W7 5)9 // U]i, Eé{;? Vkl are tOp—kl vectors a © p evious state-o ©-a studies
[Sobolev et al., 2022] Dependent Heuristic Post-Training
[[\)A(/iao etral},22%223;>]] ID(w.iependden‘[t Eeur@s?c Dqut—T;z‘lir%in'g 6 ZOSS {— LT (ij Dt?"); truncated from UZ) El’ Vl
[Cao et al., 2024] Dependent Heuristic Post Training - if | floss — loss| < ¢ then »
Ours Independent Theory-Driven During-Training o | Z “ 5 5 “ ( Z _I_ u) / 2 7 B return Wk
. ) 1 ’ ’ * A stricter bound of results from Theorems 1-3 can
Mathematical Formulation of Neural Networks 9 else . bett rol the bal bet
o L w80« (I +u)/2; give us e_er control over the .a ance between
Full-Rank Model Space — deep learning model compression and accuracy.
n | return Wy ; » The rank-selection algorithm could be based off a
1 2 L eneralization bound for the predicted accuracy on
W %4 %%
X0 1 X! > X2—> -« s —>xl! - e unseen data.
. a ¢ - Rank-selection-based model compression can be
Algorithm 3: Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm implemented in other models other than ResNet.

\ \ Low-Rank Approximation \ Input: full-rank parameters U, 32, V, loss error tolerance €, stop searching precision Ao, training epoch £
\ \ — _ \ Output: low-rank parameters Uy, 2, Vi Key REfe rences
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selection AS Eric Xing, Dimitris Papailiopoulos, et al. Cuttlefish: Low-rank model
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