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Data is born at the edge

Billions of phones & IoT devices constantly generate data

Data enables better products and smarter models





Privacy Leakage Concern?



Federated Learning
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• Federated Learning (FL): A solution to train machine learning models 

without directly accessing local private data.
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Federated Learning
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Federated Learning
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Federated Learning Example: Gboard

10Reference: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Gboard

• A virtual keyword app

designed by Google

• Has over 50B downloads

• Gets a rating of 4.5 / 5

from over 9.6M users

• Involves FL techniques in

software design in 2017



Security Concerns of Federated Learning
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Send a 

poisoned 

model

Cause ineffectiveness 

of the global model

Impact the local training 

of benign participants



Backdoor Attacks in Federated Learning

12
https://www.researchgate.net/publication/347766719_Februus_Input_Purification_Defense_Against_Trojan_Attacks_on_Deep_Neural_Network_Systems

A backdoor attack illustration: Left: Normal sign (benign input). Right: Backdoored 

sign (Backdoored input with the Post-it note trigger) is recognized as a 100 km/h 

speed limit by the backdoored network.

A secure and robust federated learning scheme is necessary!
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Problem Formulation
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Objective 
Function 

Dataset

Clients 1 2 3 n

𝒟1 𝒟2 𝒟3 𝒟𝑛

.  .  .

.  .  .

.  .  .

for

*        is the size of dataset of      .

*



Problem Formulation
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Standard Federated
Learning

Aggregation 
Function 

Client 1 2 3 n

.  .  .

Server



Backdoor Attacks
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• Generating backdoored images

• Common backdoor triggers patterns

original image backdoor trigger backdoored image

regular shape trojan watermark physical image



Backdoor Attacks in Centralized Learning

Backdoored
Model

Training Stage Inference Stage

Malicious Attacker 

Backdoored Dataset 



Backdoor Attacks in Federated Learning
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Distributed Backdoor Attacks in Federated Learning
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Global trigger

Local trigger

Backdoored
image



Formulation of Distributed Backdoor Attacks
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The objective function 
of attacker 𝒊: 

• The malicious goals:

• high classification accuracy on uninfected images

• high attack success rate on infected images

Notations Descriptions

𝑁𝐴, 𝑁𝐵 , 𝜀
𝑁𝐴: the attackers’ group; 𝑁𝐵: the benigner’ group; 𝑁𝐴 ∩ 𝑁𝐵 = ∅, 𝑁𝐴 ∪ 𝑁𝐵 = 1,2, … , 𝑛 ;

𝜀: the ratio of malicious clients among all, ε = 𝑁A/n.

𝒟𝐴 , 𝒟𝐵 𝒟𝐴: the infected images; 𝒟𝐵: the uninfected images; 𝒟𝐴 ∩ 𝒟𝐵 = ∅, 𝒟𝐴 ∪ 𝒟𝐵 = 𝒟𝑖 .

𝛿𝑖 , 𝛿, 𝜁 𝛿𝑖: the local backdoor trigger; 𝛿: the global backdoor trigger; 𝜁: target label



Existing Defenses against Backdoor Attacks (Centralized)
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Category Description Literature 
Local

Access
⋇

Computation

Overhead

Input

filtering

Pick out backdoored inputs from all 

inputs
[Tran et al. NIPS’18] Yes Moderate

Model 

inspection

Exclude malicious local models 

which contain the sensitive neurons

to the backdoor triggers

[Chen et al. AAAI’19]

[Guo et al. ICDM’19] 

[Huang et al. AAAI’19] 

[Liu et al. CCS’19]

Yes Heavy

Model

sanitization

Prune the neurons which highly 

sensitive to the backdoor triggers
[Liu et al. RAID’18]

[Wang et al. S&P’19]
Yes Heavy

Features of existing backdoor defenses in centralized learning settings

• Need to access to sensitive dataset to achieve the defense goal

• Have comparatively heavy computation overhead

⋇
Local Access states whether or not the defense needs to access local private data to achieve the defense goal.



Existing Defenses against Backdoor Attacks (Centralized)

22

Spectral signatures in backdoor attacks

• Intermediate layers’ representation reveals the dilemma of normal and backdoored

input in statistics, compared with raw data themselves 

• Propose a statistical solution to filter out backdoored inputs from all inputs

B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,” in Advances in Neural Information Processing Systems, 

2018, pp. 8000–8010.



Existing Defenses against Backdoor Attacks (Centralized)
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DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural 

Networks

• Observe the dilemma of Intermediate layers’ representation between normal and

backdoored models

• Exclude malicious models which contain sensitive neurons to backdoor triggers

H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepinspect: A black-box trojan detection and mitigation framework for deep neural 

networks.” in IJCAI, 2019, pp. 4658–4664.



Existing Defenses against Backdoor Attacks (Centralized)

24

Neural cleanse: Identifying and mitigating backdoor attacks in neural networks

• Identify the statistical observation of backdoored neurons

• Prune the neurons which highly sensitive to the backdoor triggers

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, “Neural cleanse: Identifying and mitigating backdoor 

attacks in neural networks,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp. 707–723.



Existing Defenses against Backdoor Attacks (Centralized)
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Category Description Literature 
Local

Access
⋇

Computation

Overhead

Input

filtering

Pick out backdoored inputs from all 

inputs
[Tran et al. NIPS’18] Yes Moderate

Model 

inspection

Exclude malicious local models 

which contain the sensitive neurons

to the backdoor triggers

[Chen et al. AAAI’19]

[Guo et al. ICDM’19] 

[Huang et al. AAAI’19] 

[Liu et al. CCS’19]

Yes Heavy

Model

sanitization

Prune the neurons which highly 

sensitive to the backdoor triggers
[Liu et al. RAID’18]

[Wang et al. S&P’19]
Yes Heavy

Features of existing backdoor defenses in centralized learning settings

• Need to access to sensitive dataset to achieve the defense goal

• Have comparatively heavy computation overhead

⋇
Local Access states whether or not the defense needs to access local private data to achieve the defense goal.



Existing Defenses against Backdoor Attacks (Distributed)
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Category Description Literature 
Local

Access
⋇

Computation

Overhead

Model 

quantization

Quantize the local model updates

before aggregation
[Bernstein et al. ICLR’19]

[Ozdayi et al. AAAI’21]
No Lite

Robust

aggregation 

Design robust aggregation metrics

to remove negative impacts from

malicious updates

[Fung et al.USENIX’20]

[Pillutla et al. arXiv’19]

[Sun et al. arXiv’19]
No Lite

⋇
Local Access states whether or not the defense needs to access local private data to achieve the defense goal.

Features of existing backdoor defenses in federated learning settings

• cannot access to sensitive dataset to achieve the defense goal

• often have a restricted assumption over the ratio of attackers among all clients, e.g.,

less than 50%.



Observation: Large Magnitude of Attackers’ Local Updates

• Weight re-scaling operation

• 𝜌 : re-scaling factor

weight re-scaling operationoriginal 
backdoored
model

augmented 
backdoored
model

when 𝜌 = 1, ASR < 0.05

when 𝜌 = 10, ASR > 0.8

(when the malicious client’s ratio is 0.2)

The minority of the malicious party determines
the necessity of weight re-scaling operation



Norm Clipping Defense

28

• The norm clipping defense scheme [Sun et al. arXiv’19]: clipping local 

updates to ensure whose l2 norm is upper bounded by a threshold, i.e., M, as 

the following,

• Although the norm clipping defense is designed to resist centralized 

backdoor attacks, it still helps in resisting distributed backdoor attacks.

• So, the determination of the range of the norm threshold is important to the

defense’s success.

 

Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.
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Collusion Among Backdoor Attackers

Global Model

Training Stage Inference Stage

Malicious Client 

Benign Client 

Backdoored Dataset 

Benign Dataset 

Robust Aggregation Backdoor Defense 

Saier Alharbi, Yifan Guo, and Wei Yu. "Collusive Backdoor Attacks in Federated Learning Frameworks for IoT Systems." to appear in IEEE Internet of Things Journal (2024).



Collusion Among Backdoor Attackers

Global Model
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Backdoored Dataset 
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Robust Aggregation Backdoor Defense 

Saier Alharbi, Yifan Guo, and Wei Yu. "Collusive Backdoor Attacks in Federated Learning Frameworks for IoT Systems." to appear in IEEE Internet of Things Journal (2024).



Attack Intuition of Collusive Backdoor Attacks
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• 1) For each collusive adversary, 

the l2 norm of perturbed model 

update vector is at the same 

level as that of normal model 

update vector, thereby being 

able to bypass robust 

aggregation defenses. 

• 2) The summation of all 

perturbation vectors assigned to 

collusive attackers would be 
close to the zero vector. 

 



Formulation of Collusive Backdoor Attacks
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The objective function 
of attacker 𝒊: 

• The malicious goals:

• each individual attacker is disguised to bypass the defender’s measurement

• the sum of perturbations should be equal to 0.

Notations Descriptions

𝑁𝐴, 𝑁𝐵 , 𝑆𝑡 𝑁𝐴: the attackers’ group; 𝑁𝐵: the benigner’ group; 𝑁𝐴 ∩ 𝑁𝐵 = ∅, 𝑁𝐴 ∪ 𝑁𝐵 = 1,2, … , 𝑛 ; 

𝑆𝑡: Set of selected clients in the t-th global round

Δ𝑊𝑖
𝑡 𝑊𝑖

𝑡: scaled and backdoored model to be submitted to the server; Δ𝑊𝑖
𝑡 = 𝑊𝑖

𝑡 − 𝑊𝐺
𝑡−1

𝑃𝑖
𝑡 The coordinate-wise perturbation vector to be added on Δ𝑊𝑖

𝑡



Formulation of Collusive Backdoor Attacks
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• Objective Function Approximation:

• Denoting 𝐀 = [ Δ𝑊1
𝑡

𝑇
; Δ𝑊2

𝑡
𝑇

; … ; Δ𝑊𝑠𝑡

𝑡
𝑇

]; 𝐀′ = [ 𝑃1
𝑡

𝑇
; 𝑃2

𝑡
𝑇

; … ; 𝑃𝑠𝑡

𝑡
𝑇

]

• Approximation

• Advantages of Approximation: 

• A smooth and convex objective function (easy implemented).

• The optimal solutions between the approximated and original one keep 

the same.

𝑠𝑡 = |𝑁𝐴 ∩ 𝑆𝑡|



Verification Our Idea: A Pilot Study
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Saier Alharbi, Yifan Guo, and Wei Yu. "Collusive
Backdoor Attacks in Federated Learning
Frameworks for IoT Systems." to appear in IEEE
Internet of Things Journal (2024).



Speedup the Perturbation Estimations 

36

• To estimate 𝐀′, our problem space is in 𝑠𝑡 × 𝑑 dimensional space, which

is quite huge and brings high computation cost. 

• Typically, 𝑠𝑡 (number of participated malicious clients) < 100, and 𝑑 (the 

number of the benchmark models’ parameters) > several millions.

• To speedup the estimation, we have involved the Gram-Schmidt process.

• We could obtain an estimation of C′ by feeding C and λ into the 

approximated objective function.

• But for the estimation of C′, its problem space is just 𝑠𝑡 × 𝑠𝑡, which is far 

smaller than 𝑠𝑡 × 𝑑. 



Our Collusive Backdoor Attack

37



Convergence Analysis of Perturbation Estimations

38



Attack Performance 

39



Verification of Negligible Computation Overhead

40

• Is the proposed perturbation estimation scheme highly time consuming?

• NO! 

• Running time cost:

• One epoch’s local training will take 5.6 seconds on the overage on 

CIFAR-10 dataset.

• The running time for the perturbation estimation functions only 

takes 0.1 (<< 5.6) seconds.

• However, if no Gram-Schmidt process is involved, the time cost for 

perturbation estimations would be increased to 4.8 seconds.



A Quick Summary

41

• A New Threat:

• Existing robust aggregation based defenses, handle each returned model 

individually, to detect backdoored models and/or mitigate the negative effects 

of returned backdoored models.

• The distributed nature in FL opens a door for attackers to launch attacks 

collusively, which sets up a higher bar for robust aggregation defenses.

 

• Correlations with Distributed Backdoor Attacks (DBA):

• DBA only considers attack coordination by adjusting local image triggers in the 

local backdoor training [collusion in data space];

• Our CBA considers both local backdoor training and collaborative post-training 

model manipulations [collusion in both data and model space];

• DBA could be treated as a special case of CBA.

 

Saier Alharbi, Yifan Guo, and Wei Yu. "Collusive Backdoor Attacks in Federated Learning Frameworks for IoT Systems." to appear in IEEE Internet of
Things Journal (2024).
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Future Research Directions toward Backdoor Attack Resilient FL

43

• Countermeasures against Collusive Backdoor Attacks:

• Similarity-Score based client selection approaches

• More advanced robust aggregation protocols.

• Randomized Client Selection Scheme

• Involving randomization and redundancy into the aggregation protocol

• Secured Communications in FL

• Utilizing secure communication channels, such as encrypted 

connections and digital signatures

 



Thank you for your attention!

Q & A
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