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Data is born at the edge

Billions of phones & loT devices constantly generate data

Data enables better products and smarter models
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Federated Learning

» Federated Learning (FL): A solution to train machine learning models
without directly accessing local private data.
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Federated Learning
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Federated Learning Example:

Gboard @

Gboard

« Avirtual keyword app
designed by Google

« Has over 50B downloads

« Getsaratingof4.5/5
from over 9.6M users

* Involves FL techniques in
software design in 2017

Reference: https://ai.googleblog.com/2017/04/federated-learning-collaborative .html
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Security Concerns of Federated Learning

Send a
poisoned

Cause ineffectiveness
of the global model

—

Impact the local training
of benign participants
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Backdoor Attacks in Federated Learning

A backdoor attack illustration: Left: Normal sign (benign input). Right: Backdoored
sign (Backdoored input with the Post-it note trigger) is recognized as a 100 km/h
speed limit by the backdoored network.

A secure and robust federated learning scheme is necessary!

12
hitps://www.researchgate.net/publication/347766719_Februus_Input_Purification_Defense_Against_Trojan_Attacks_on_Deep_ Neural_Network_Systems
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Problem Formulation
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Backdoor Attacks

* Generating backdoored images

Target Label: 4

Trigger: !

Backdoor
Configuration original image

backdoor trigger

e Common backdoor triggers patterns

regular shape

trojan watermark

backdoored image

physical image
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Backdoor Attacks in Centralized Learning

Training Stage
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Model
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Backdoor Attacks in Federated Learning

Training Stage

A

Modified Samples

okl || 52 1
Label 7

Modified Training Set

!

Inference Stage

Iwnftlj':isgger ._) —>label (Target Label)
é —>Label 4
Inputs _> PEY) —rebels (Correct Labels)
w/o Trigger_) —> Label 7
&% Malicious Client Target Label: 4
‘ Benign Client Trigger: !
5 Backdoored Dataset
: Backdoor
5 Benign Dataset SRHEAD



Distributed Backdoor Attacks in Federated Learning

Global trigger i

Local trigger

Backdoored
image



Formulation of Distributed Backdoor Attacks

* The malicious goals:
* high classification accuracy on uninfected images
* high attack success rate on infected images

LPBAw) = 3 [flwiah + 6,01+ Y [flw;ai,yb)]

The objective function ’ , .
jEDY, J€DE

of attacker i:
where Z §; =8 D}y UDy =D" and D4, N D = ¢
1€ENa

Notations Descriptions

N,: the attackers’ group; Ng: the benigner’ group; Ny N Ny = @, N, UNg ={1,2,...,n};

Ny, Ng, . o X
AB &: the ratio of malicious clients among all, € = N, /n.

Dy, Dp D,: the infected images; Dp: the uninfected images; D, N Dy = @, Dy U Dy = D.

6;,0,¢ 6;: the local backdoor trigger; §: the global backdoor trigger; {: target label



Existing Defenses against Backdoor Attacks (Centralized)

Features of existing backdoor defenses in centralized learning settings

* Need to access to sensitive dataset to achieve the defense goal

« Have comparatively heavy computation overhead

o . Local Computation
Category | Description Literature Access” Overhead
.Inpyt !DICk out backdoored inputs from all (Tran et al. NIPS18] Yes Moderate
filtering inputs
Exclude malicious local models [Chen et al. AAAI9]
HieelE which contain the sensitive neurons | (510 etal- ICDM'19] Yes Heavy
inspection _ [Huang et al. AAAI'19]
to the backdoor triggers [Liu etal. CCS'19]
Model Prune the neurons which highly [Liu et al. RAID’18] Yes Heav
sanitization | sensitive to the backdoor triggers [Wang etal. S&P’19] y

*Local Access states whether or not the defense needs to access local private data to achieve the defense goal.




Existing Defenses against Backdoor Attacks (Centralized)

Spectral signatures in backdoor attacks

* Intermediate layers’ representation reveals the dilemma of normal and backdoored
input in statistics, compared with raw data themselves

* Propose a statistical solution to filter out backdoored inputs from all inputs
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B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,” in Advances in Neural Information Processing Systems,
2018, pp. 8000-8010.



Existing Defenses against Backdoor Attacks (Centralized)

Deeplnspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural
Networks

« Observe the dilemma of Intermediate layers’ representation between normal and
backdoored models

« Exclude malicious models which contain sensitive neurons to backdoor triggers

Benign model

@, Trojaned model

DeepInspect Framework Q9 Muoddel
[ - o e Trojanad—e ’ |
% | ey (2] @) J Patching | |/

Madel | ©V it Trigger | A | Anomaly !
- @ /" Moda |

tEEF
L8 15;
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* = Inversion Generation| | Detection
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H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepinspect: A black-box trojan detection and mitigation framework for deep neural 23

networks.” in [JCAI, 2019, pp. 4658—4664.



Existing Defenses against Backdoor Attacks (Centralized)

Neural cleanse: Identifying and mitigating backdoor attacks in neural networks
» Identify the statistical observation of backdoored neurons

* Prune the neurons which highly sensitive to the backdoor triggers

Clean model Infected model

Trigger
Decision

. Dimensi . -
Boundary \ imension Adversarial samples Minimum A needed
A e0 0o o000 to misclassify all
A B i C

. ! ! ; I samples into A

: . Normal I I C Normal

P —v 1 Y Dimension
Minimum A needed to : — : : :

misclassify all samples into A Intuition: In an infected model, it requires

to cause misclassification
than into other uninfected labels

—e0 000 —— — —— - - - — —>

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, “Neural cleanse: Identifying and mitigating backdoor

24
attacks in neural networks,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp. 707-723.



Existing Defenses against Backdoor Attacks (Centralized)

Features of existing backdoor defenses in centralized learning settings

* Need to access to sensitive dataset to achieve the defense goal

« Have comparatively heavy computation overhead

o . Local Computation
Category | Description Literature Access” Overhead
.Inpyt !DICk out backdoored inputs from all (Tran et al. NIPS18] Yes Moderate
filtering inputs
Exclude malicious local models [Chen et al. AAAI9]
HieelE which contain the sensitive neurons | (510 etal- ICDM'19] Yes Heavy
inspection _ [Huang et al. AAAI'19]
to the backdoor triggers [Liu etal. CCS'19]
Model Prune the neurons which highly [Liu et al. RAID’18] Yes Heav
sanitization | sensitive to the backdoor triggers [Wang etal. S&P’19] y

*Local Access states whether or not the defense needs to access local private data to achieve the defense goal.




Existing Defenses against Backdoor Attacks (Distributed)

Features of existing backdoor defenses in federated learning settings
« cannot access to sensitive dataset to achieve the defense goal

« often have a restricted assumption over the ratio of attackers among all clients, e.g.,
less than 50%.

e . Local | Computation
Category | Description Literature Access” | Overhead
Model Quantize the local model updates [Bernstein et al. ICLR19] No Lite
quantization | before aggregation [Ozdayi et al. AAAI21]
Robust Design robust aggregation metrics [Fung et al.USENIX20]
to remove negative impacts from [Pillutla et al. arXiv'19] No Lite

aggregation

malicious updates

[Sun et al. arXiv’19]

*Local Access states whether or not the defense needs to access local private data to achieve the defense goal.




Observation: Large Magnitude of Attackers’ Local Updates

. Weight re-scaling operation The minority of the malicious party determines

the necessity of weight re-scaling operation
» p:re-scaling factor

original weight re-scaling operation augmented
backdoored - aug 1 - org _— backdoored
~ org % = . - — ~ aug

model i wg +p (W wg ) model !

% == e AR R — = = /‘, E
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when p = 1, ASR < 0.05 In(p) (when the malicious client’s ratio is 0.2)



Norm Clipping Defense

« The norm clipping defense scheme [Sun et al. arXiv'19]. clipping local
updates to ensure whose |, norm is upper bounded by a threshold, i.e., M, as
the following,

AW’

we=wg ' +1- |
G G !_;;max{l; [[Awi ]|, /M }

« Although the norm clipping defense is designed to resist centralized
backdoor attacks, it still helps in resisting distributed backdoor attacks.

» S0, the determination of the range of the norm threshold is important to the
defense’s success.

Z.Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.
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Collusion Among Backdoor Attackers

Training Stage Inference Stage

e
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Saier Alharbi, Yifan Guo, and Wei Yu. "Collusive Backdoor Attacks in Federated Learning Frameworks for loT Systems." to appear in IEEE Interet of Things Journal (2024).



Collusion Among Backdoor Attackers

Training Stage : Inference Stage
|
|
| —_— —>Label 4
| |nput§ . (Target Label)
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| Inputs é RN | —>Llabel 5
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I ‘
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©/
Saier Alharbi, Yifan Guo, and Wei Yu. "Collusive Backdoor Attacks in Federated Learning Frameworks for loT Systems." to appear in IEEE Interet of Things Journal (2024).



Attack Intuition of Collusive Backdoor Attacks

No Perturbation

Ol>
Ol>

| >

OO0
VAVAN

Add Perturbation

O +
O +

_|_

Poisoned Model
Update Vector

S

A\

+

A\

_|_
I
(O J

Normal Model
Update Vector

o
~

Q

Q

Perturbation Vector H H Vector Norm

1) For each collusive adversary,
the I, norm of perturbed model
update vector is at the same
level as that of normal model
update vector, thereby being
able to bypass robust
aggregation defenses.

2) The summation of all
perturbation vectors assigned to
collusive attackers would be
close to the zero vector.

32



Formulation of Collusive Backdoor Attacks

* The malicious goals:
® each individual attacker is disguised to bypass the defender’'s measurement

® the sum of perturbations should be equal to O.

Find P} (Vi € NonN SY)
s.t. ||AW! + PF|la < M,Vie Nan St

Z Pt =0.

iENANS?

The objective function
of attacker i:

Notations Descriptions
N, Ny, S N?: the attackers’ gr.oup; I.VB: the benigner’ group; Ny N Ng = @, Ny U Ng =1{1,2,...,n};
S*: Set of selected clients in the t-th global round
awf Wlt scaled and backdoored model to be submitted to the server; A_Wf = Wlt —wit
Pt The coordinate-wise perturbation vector to be added on AWit



Formulation of Collusive Backdoor Attacks

* Objective Function Approximation:

* Denoting A = [(AW}) ; (aW5) ;..; (BW) 1; A = [() () . (P:
Find P! (Vi € NaN St
s.t. |AW?E + Pt|la < M,Vie NaN St

Z Ff:(]. Approximation

1ENANS?

min J(A’; A, \) = || log(1 +exp(A + A)) | + A A"T1[3

® Advantages of Approximation:
® A smooth and convex objective function (easy implemented).

® The optimal solutions between the approximated and original one keep
the same.



Verification Our Idea: A Pilot Study

Row Vector k Ax + AL

R Vear 1 3 ulule l. 1] ll||1I |1u H'1 ]||ﬂ||r|l|.]|llh ; d {Il'ljl “ q Il WI J,n"l,.lu,LJ.Tlnljpkl.w. "”'"|"1'l|']"'-l"||

The first 100 dimension of vector

TABLE III: Numerical Results of Key Metrics Verification (M
,Ira'iu  Bevtis by -7
3 , .j
2 L . - 1l "ITI"I"I!I r‘I lL'll
o v + |l| FI i TW s LT T
Row Vector 1 14.0067 X 6.9723 v
100 oo LVt e P —— Row Vector 2 14.1845 X 6.9723 v
Row Vector 3 14.1111 X 6.9719 v

Row Vector 4 14.0554 X 6.9725 v
The Mean Absolute Value of

ﬁ!” ; ,],l"l.JlI,LJ-I ‘|||""~|Tl il | 'Llll Accumulated Perturbation Vector %Ej':l [|Ef;1 a;j” = 0.0019

H'J'Lll |"]|

100 dimension of vector

wpu W‘“ .l www .

Row Vector 3 3 ILIHJ [J“JT W .l ||]JH
Saier Alharbi, Yifan Guo, and Wei Yu. "Collusive

Row Vector 4 MTK'I‘ImJ l‘

Backdoor Attacks in Federated Learning
Accumulated ) “ |||| | Frameworks for loT Systems." to appear in IEEE
RowVectar: H ] e e = § || n‘“| | Internet of Things Journal (2024).

(Summation of The smel ange of yaksss 1 ihe sumTRVe perkabeton veciors
4 Row Vectors)




Speedup the Perturbation Estimations

To estimate A’, our problem space is in s; X d dimensional space, which
Is quite huge and brings high computation cost.

® Typically, s; (number of participated malicious clients) < 100, and d (the
number of the benchmark models’ parameters) > several millions.

* To speedup the estimation, we have involved the Gram-Schmidt process.

Algorithm 1 Gram-Schmidt Process

1: procedure GRAMSCHMIDT(A)
s¢,d + A.shape
Initialize U as an empty list of vectors Ar{
al « ALl oyt AT
for i =2 — s; do 2
u; +— Al
forj=1—1 7(_1) dﬁo) N N
T}eﬁf—mg“ﬁ A,; C;Ll"Ul+ciq£2'u2+"'+c,5!s£'u&‘z

Cy Uy W+t

—
P sy
/ / — /
Cop " UL + Cog - U2 + - -+ + Co, * Us,

NN hw®

. Prid 1 —
9: Ui EJTEW * U
10: Add ui to U
11: C =AU
12: return C, U

* We could obtain an estimation of C’ by feeding C and A into the
approximated objective function.

* But for the estimation of C', its problem space is just s; X s;, which is far
smaller than s; X d.



Our Collusive Backdoor Attack

Algorithm 2 Collusive Backdoor Attack (Global Round t)
Input: Learning rate for perturbation estimations (3, Control
hyperparameter A
Output The poisoned local model W}~ 1+AWf for attacker i €

Nan St
1: Each attacker i € N4 N S* receives the global model Wéfl in
the ¢-th global round.
% X\ 2: The attack coordinator identifies the participated attackers in

round ¢

Phase 1 — Local Backdoor Training
g g g @ e e 3: for each attacker i € N4 N St parallelly do

Adversarially train the model with Eq. (2) and get the

- ~\ backdoored model W}.
4 \ 5: Re-scale model updates as Eq. (3) and get the scaled back-

s

: ’ doored model W}.
Each collusive attacker receives the global t—1 .
O i 6: Send AW} = Wt WE to the attack coordinator.
Each collusive attacker locally trains the Phase 2 — Perturbation Estimations
received model with each poisoned dataset. N
7: for the attack coordinator do
(@) Each collusive attacker sends poisoned 8: Form A by collecting AW}/ sent from each attacker, i.e.,
egen model updates to the attack coordinator. A= [(AW{)T; (AW;)T; o (Aw'ﬂt£ )T]
Poisoned Normal The coordinator does perturbation estimations % Get coefficient matrix C and orthonormal basis U based on
Dataset Dataset @ based on our proposed attack scheme. Algorithm 1, i.-e.-, .cz U= ,GR_AMSCHM‘IDT(A)'
10: Randomly initialize C’ with the same shape as C.
Collusive @ Benigner (5) The coordinator returns perturbed poisoned 1 while C’ does not converge do
Attacker model updates to each attacker. 12: C' + C' +pVJ(C';C,A)
. / 1
\K% Attack SoTver Each collusive attacker sends back local 13: Get A/ by feeding C’ and U into Eq. (9).
Coordinator l' \ ® model, which has been poisoned and /,1‘ 14: Send AWt (Ai+ A})T to attacker i € N4 N S, ¢
\ erturbed, to the server. /
& = 15: for each attacker i € N4 N S* parallelly do

16: Send the local model Wﬁ Ly AWt back to the server after

receiving AW* from the attack coordinator. 37




Convergence Analysis of Perturbation Estimations

Theorem 1. J(aj;)
J(a ig) =
AT (T

Lemma 1. If ||Cy + Ci |2 < M, then |[Ax + ALl2 < M,
for each k.

Proof. 1f ||Cyx+Cy |2 < M, it means that 3771, (cx;+c¢};)* <
M?. According to Eq. (9),

[[As + ALl

- (i(Cki + ¢;) - E,}) (2(ij +cij) E;)

i=1 j=1

—Z (ckj + chy)* - 135113

+ > (ki + i) (exj + ciy) - (ul, i)
i#]
()¢ )
=2 (exj + i) a3 < M2,
Jj=1
Particularly, (*) is due to the orthonormality of vectors

171):??%9---,“_5,}, le (TT_;.},u_)_;>—]-! and (u_:aqj.;):() O

!

convex Ww.rt. a;;, Wwhere

ZS; >i_log (1+exp ((al; +ai;)?)) +
a;)". Similarly, J(c};) is convex w.rt. ;.

Lemma 2. [36] Let [ be a,-strongly convex and ay-smooth.
Then, for all x and vy, we have:

(Vi(z) - Viy),z—y) >

|z — y|?

IV f(z) -

a+a

Vi)

a+a

Theorem 2. Considering that J(a;;) is a (1 + 2))-strongly
convex and (2 + 2\)-strongly smooth function for ev-
ery ajj, if we choose the learning rate 3 = 2/(3 +
4)\), after m steps, ([a’ ™) = J ([a;j ) < 1+
N exp () llat;]? — [ay]* |, where [aly]?, laf ", laf;]™
represent the initial value, optimal value, updated value after
m steps for every a;j, respectively, and K is the condition
number, e.g., k = (2+2)\)/(1+2)). The convergence rate of
J(a;) is O(exp(—m)) with the gradient descent optimizer.

38



Attack Performance

TABLE V: Performance Evaluations on Both IID and non-1ID Datasets

Dataset STL-10 CIFAR-10 T-LESS FedEMNIST
Attack Type Altf;ck IBA | CBA Altf;ck IBA | CBA At}fa‘;: | BA | cBA AI:;:k IBA | CBA
ASR | 0.080 | 0.789 | 0.787 | 0.086 | 0.772 | 0.774 | 0.011 | 0.902 | 0914 | 0.011 | 0.936 | 0.945

No Defense | CIA | 0.803 | 0.799 | 0.793 | 0.782 | 0.779 | 0.780 | 0.922 | 0.920 | 0.920 | 0.990 | 0.990 | 0.990
OA | 0.801 | 0.505 | 0.503 | 0.780 | 0.504 | 0.503 | 0920 | 0.509 | 0503 | 0.990 | 0.527 | 0.523

ASR / 0573 | 0.774 / 0512 | 0.768 / 0.533 | 0.792 / 0.455 | 0.937

NC (M=0.4) | CIA 7 0.796 | 0.795 / 0.635 | 0.630 ] 0.915 [ 0.915 7 0.990 [ 0.990
OA 7 0.612 | 0.511 7 0.562 | 0.431 7 0.601 | 0.562 7 0.768 | 0.527

ASR / 0.500 | 0.677 / 0.458 | 0.725 / 0487 | 0.745 / 0.402 | 0912

NC (M=0.3) [ CIA / 0.796 | 0.796 / 0.778 | 0.776 / 0.915 | 0.915 / 0.990 | 0.990
OA 7 0.648 | 0.560 ] 0.660 | 0.526 7 0.714 | 0.585 7 0.794 | 0.530

ASR / 0.396 | 0.774 / 0.356 | 0.692 / 0.388 | 0.712 / 0.160 | 0.748

NC (M=0.2) [ CIA ] 0.799 | 0.795 / 0.778 | 0.776 / 0.915 | 0.915 / 0.990 | 0.990
OA ] 0.702 | 0511 / 0.711 | 0.542 / 0.764 | 0.602 / 0915 | 0.621

ASR 7 0.245 | 0.537 / 0.196 | 0.530 ] 0211 | 0.555 7 0.023 | 0.436

NC (M=0.1) CIA / 0.797 0.795 / 0. 777 0.775 / 0.914 0915 / 0.990 0.990
OA 7 0.776 | 0.620 7 0.791 | 0.618 7 0.852 | 0.680 7 0.084 | 0.777

ASK 7 0478 | 0.746 7 0.468 | 0.706 7 0498 | 0.721 7 0.566 | 0.820

GM CIA 7 0582 | 0.581 / 0.532 | 0.491 7 0.914 [ 0915 ] 0.990 | 0.990
OA 7 0552 | 0418 7 0.532 | 0.393 7 0.708 | 0.597 7 0.712 | 0.585

ASR 7 0.308 | 0.668 / 0.288 | 0.647 7 0.301 | 0.667 7 0.152 | 0.873

RLR (7=8) [ CIA 7 0.792 | 0.791 / 0.775 | 0.775 7 0.914 [ 0915 ] 0.988 | 0.990
OA 7 0.742 | 0.562 7 0.744 | 0.564 7 0.807 | 0.624 7 0.018 | 0.550




Verification of Negligible Computation Overhead

* Is the proposed perturbation estimation scheme highly time consuming?

* NO!

* Running time cost:

* One epoch’s local training will take 5.6 seconds on the overage on
CIFAR-10 dataset.

* The running time for the perturbation estimation functions only
takes 0.1 (<< 5.6) seconds.

* However, if no Gram-Schmidt process is involved, the time cost for
perturbation estimations would be increased to 4.8 seconds.



A Quick Summary

* ANew Threat:

* Existing robust aggregation based defenses, handle each returned model
individually, to detect backdoored models and/or mitigate the negative effects
of returned backdoored models.

* The distributed nature in FL opens a door for attackers to launch attacks
collusively, which sets up a higher bar for robust aggregation defenses.

* Correlations with Distributed Backdoor Attacks (DBA):
* DBA only considers attack coordination by adjusting local image triggers in the
local backdoor training [collusion in data space];
* Our CBA considers both local backdoor training and collaborative post-training
model manipulations [collusion in both data and model space];
* DBA could be treated as a special case of CBA.

Saier Alharbi, Yifan Guo, and Wei Yu. "Cdllusive Backdoor Attacks in Federated Learning Frameworks for lIoT Systems." to appear in IEEE Internet of n
Things Journal (2024).
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Future Research Directions toward Backdoor Attack Resilient FL

* Countermeasures against Collusive Backdoor Attacks:
* Similarity-Score based client selection approaches
* More advanced robust aggregation protocols.

* Randomized Client Selection Scheme
* Involving randomization and redundancy into the aggregation protocol

* Secured Communications in FL
* Utilizing secure communication channels, such as encrypted
connections and digital signatures

43



Thank you for your attention!
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