Appendix for the Paper
“Integrating Independent Layer-Wise Rank Selection with Low-Rank SVD
Training for Model Compression: A Theory-Driven Approach”

A Proof of Theorems 1, 2, and 3

Proposition 1 (Theorem 4.2 [Wright and Ma, 2022]). Let W € R™*" be a matrix, and r = rank(W). W can be decomposed
as USVT where U € R™ " and V. € R™*7", such that UUT =1and VVT =1, & € R™*" is a is diagonal matrix, i.e.,
Y = diag(o), 0 = [01,09,...,0.), and o (k € [r]) are singular values of W, where o1 > o9 > --- > o, > 0. Then, we
have W =57, aiUZJ‘/Z-’T:.

Lemma 1 (Eckart—Young—Mirsky Theorem [Golub et al., 1987]). Let W € R™*"™ be a matrix, and r = rank(W). Following
the same settings in Proposition 1, we define Wy, to be the best rank-k approximation to W in the spectral norm, i.e., Wy, =

Uz, VI = Zle oU.; VL, where Uy, 3y, Vi, are top-k vectors truncated from U, X, V. Then, we have |W — Wy||s =
Ok+1, Where || - ||2 stands for the spectral norm.

Proof. We have

T k
[IW — Wi|l2 = || ZO’Z‘W,;U?’; - Z‘”VEGU:,T%'H? (Proposition 1)
i=1 i=1
T
= H Z Ui‘/i#Uz;‘b
i=k+1
= Ok+1 (The definition of spectral norm)
O

Theorem 1 (The output difference bound for rank-k approximation over L-layer neural networks). We denote a' to be the
activation function for the I-th layer, and assume a' is p;-Lipschitz and a'(0) = 0 for all | € [1,L]. Let X° be the ini-
tial input vector, X' and X ,lc be the output vectors as a result of passing the full-rank matrix W' and low-rank matrix W,i
through the 1-th layer, respectively, and o' be the i-th singular value of W'. We define k' such that the top k' largest sin-
gular values of the full-rank matrix W' are kept in the corresponding low-rank SVD approximated matrix W,ﬁ in layer 1.
Then, the output difference from rank-k approximation over L-layer feed-forward networks || Xt — X kL ||2 is upper-bounded by

1
L L 9
(Hl:1 PlUll) (21—1 ’;lz:rl) ||X0H2.

Proof. For the output difference at layer [+ 1, we have
X = X = [Jal* (WX — o WX,
< pra WX = WX]
< pra|[WHLX - Wé—&-le + W,iHXl _ Wzi+1X1l<H2
< prp| WX = WXy + pra bW X — WX
< prea W= Wl 1X |2 4 o W2 - [1X = X[

< prorogth g 1X e + praottt - [1X = X (Lemma 1)

Also, we notice that,

l l
1X*]]2 < (HPiHWle) 1X°|2 = (Hmﬁ) [1X°2.
=1 =1

I4+1 l i I+1
If weletc 1 = Pl+101:zr+1+1 (Hi:l piai) and dj4; = pl+101+ , then we have,

X — X |2 < || X0 |2 + diga || X — XL o

By induction over L layers, we have,
XY = XFl2 < epl| X0 + dr || X5 = X271 |2
< en||XOl2 + dp (c—1l|XOl|2 + d—1 || X572 = X[72|)2)
= (cr +drer—1) [| X0z + drdp— || X572 = X722
<(cp +dpep—q +dpdp_icr—o) || X°||2 +drdp_1dp—o|| X% — X8|

L-1

L2
< (CL +drep—1 +drdp—icL—2+ -+ (H dLl) C1) 1X°|2 + (H dLl) 1X° = XO]
1=0

1=1
L—2
(CL +dpep—1 +drdp—1cp—o+ -+ (H dL—l) Cl> 11X |2
1=0
L L
1 TR+l 0
_ (Hpm) (z) X9
=1 71

=1

O

Theorem 2 (The loss error bound from rank-% approximation in classification problems). Following the settings in Theorem I,
we consider a C-class classification problem. Let X} € RY and XZ-LJc € RY be the output logits when feeding a input X?

sampled from the training dataset D', e.g., D" = {X?, yi}f;l, from the full-rank parameter space VV and low-rank param-
eter space Wy, respectively. Particularly, W = {W' W2 .. WL}, W, = (WL W2, ... WL}, XE = fin(X)D),
ka = fw, (ng), and ||X?||ls < B, for Vi € [1,R]. Let z; = softmax(X}) and z;), = softmax(ka), where
softmax is the softmax function. We consider the cross-entropy function as the loss function, i.e., g(z,y) = —y* log(z).
1
Let LOW; X?) = g(2i,y;) and LOWg; X?) = g(2i k,yi)- Now, we set % < 4,V € [1,L]. Then, we have, for¥ € > 0,
1

Y S . try . tr
o= VEBL(IIE, mot) " LW D) = LW D)) < e

0
Proof. First, we define %

given input X?. Then, we have

€ RY to be the partial derivative of L(W, X?) with respect to the output layer X L for the

LV XN zs
— || =11z —¥ill2-
Oz , Yill2
Without loss of generality, for z; = [z;1,...,2i,¢c] € ROy, = Wi, - Yic] € RC, we assume Yie = 0, where ¢ €
1,C—1]andy;,c =1land z, 1 + -~ + 2z;,c = 1, where 2; ; € [0,1],V j € [1,C], Then
OL(W, X))
— s || =z —uill2
T

2
= \/(Zi,l —yi1)? 4+ (zi2 —vi2)? + - + (21,0 — Yi,0)?

= \/Z22,1 + 22-2’2 4+t 22.2’071 + (Zi,C — 1)2

= \/22'2,1"’""1'%2,071+Zi2,c_22i,0+1

= \/Z?,l +ot ot~z o Fro)zne + 1

- \/(Zm —2,0)? 4+ (zi,0-1— 7,0)* — C2l o + 1

< \/(Zi71 + 4 zico1— (C—=1)z.0)% — CZ%C +1
(The equality case holds when (z; ; — 2;,¢)(2i,j» — zi,c) = 0 for j,7" € [1,C —1])

<V2

(The equality case holds when z; ¢ = 0)

Overall, the equality case occurs when z; ; = 1if j # C and all rest z; ;- are 0 if j' # j and j' € [1, C].

o_l
Letd = 7 where || X?||2 < B and % < 4,V 1 € [L]. With Lagrange’s mean value theorem, we have
1

€
\/§BL(H1L:1 pio}

ILOW; X7) = LW X

max
)| < rEtXE+(1-t) X"
te0,1]

}||XLX£||2

<V2IXE - XF|l

L l L
Ot
< VB Y T (Hm)
=1 =1

1

L
<V2BSL <H pmi) =€
=1

Finally, |[L(W; D) — L(Wy; D) < L S8 [LOW; X?) — LW X0)| < . O
Theorem 3 (The loss error bound from rank-k approximation in regression problems). Following the settings in Theorem 1,
we consider a regression problem. Let X; L and ka be the output at layer L when feeding a input X sampled from the

training dataset D', e.g., D" = {X? ,yl} i1, Jrom the full-rank parameter space YV and low-rank parameter space Wy,
respectively. Particularly, W = {W!' W2 WEL Wy, = {W! W2,... Wl X = fw(XD), X[= fw, (XD)),
and || X?||2 < B, forVi € [1,R]. We consider the loss function as g(z,y) = ||z — yl||2. Let LOW; X?) = g(XF,y;) and

LWy; X?2) = g(XE,,yi). Now, we set 7 £iL < 6, V1 € [1,L]. Then, we have, for¥V e > 0, 36 = W, s.t.
’ o 1=1 P19
|L(W; D) — L(Wp; D")| < e
Proof. Note that
ILOW; X7) = LW X)) = | IXE = willz = [1X5% — will2 |
<NXF = i) — (X% — i)l
= 1X} = X3 lle-
Leté = W where HXO||2 < B and kl+1 < 5 Vie [} We have
ILOWV: X7) — L(Wk;X?ﬂ <||IxX* - XkLH2
ol
< [1X7ll2 Z e (Hm%)
=1
< BéL (H pmi) =€
=1
Finally, |L(W: D) — L(W:D)| < & S| [LOV: X?) — LW X0)] < c. 0

B Statistical Analysis of Our Pilot Study in Section 4.1

Full-Rank Low-Rank
€ 0 0.17 0.23 0.28 0.33 0.56
) 0 0.015 0.021 0.025 0.03 0.047
kT (Layer 1) 2 2 2 2 2 2
k? (Layer 2) 100 9 8 7 6 3
k3 (Layer 3) 3 3 3 3 3 3

To validate the feasibility of identifying & based on our derived e-6 correlation and determining the optimal k!, we conduct
a pilot study using a simple 3-layer feed-forward neural network for a ternary classification problem. Particularly, the input
is in 2 dimensions; the output is in 3 dimensions; wt

Table 4: Statistics of our pilot study.

c R2><100 W2

c R100><100’ and Wl

€ R100X3 Here, W1, W32,

Decison Boundary -0 {[Decison Boundary Decison Boundary -0 { Decison Boundary
0| on Training Dataset on Testing Dataset 01 on Training Dataset on Testing Dataset

(a) Full-rank model space (k = 100) (b) Low-rank model space (k? = 9)

“7[Decison Boundary *?[Decison Boundary
on Testing Dataset : on Testing Dataset

-20 -15 -10 -05 0.0 0.5 1.0 15 -20 -15 -1.0 -05 0.0 05 ¥ R -20 -15 -1.0 -05 0.0 05 1.0 15 -20 -15 -1.0 -05 0.0
(c) Low-rank model space (k% = 8) (d) Low-rank model space k=17

20 {[Decison Boundary Decison Boundary LrYS -0 {(Becison Boundary
on Testing Dataset 0||on Training Dataset on Testing Dataset

=20 -15 -10 -05 00 05 1.0 15

-20 -15 -10 -05 00 05

-20 -15 -10 -05 00 05 1.0 15 -20 -15 -10 -05 0.0

(e) Low-rank model space k%2 =6) (f) Low-rank model space k%2 =3)

Figure 7: A visualization of the decision boundaries on the training dataset (left column) and testing dataset (right column) through different
rank selections.

and W3 are either column full-rank or row full-rank. It means that rank(W!) = 2, rank(W?) = 100, and rank(W?3) = 3.
Since there is not much room to tune k in W' and W3, our major focus is on tuning k in W2. The activation functions in
the first and second layers are both the ReLL.U functions. The output from the third layer will be fed into a softmax function to
get the prediction probabilities. The loss function is the cross-entropy function. Fig. 7 visualizes the decision boundary on the
training (left column in each sub-figure) and testing dataset (right column in each sub-figure) through different rank selections
with more details. Table 4 lists the ¢, d, and selected k for each layer. As we can find, as the loss error bound ¢ increases, the
corresponding 0 also increases, indicating that more information is truncated as smaller values of k! are assigned to each layer,
respectively. This truncation leads to underfitting in the low-rank model, preventing it from effectively capturing the patterns of
the original full-rank model. Particularly, according to the results in Fig. 7, the key turning point in selecting k? happens from
8 to 7. We can find the decision boundary’s shape has appeared different patterns compared with that in larger k2. To some
extent, when k? = 8, it represents the smallest k', which is sufficient to retain the full-rank model’s representational capacity.
Further searching would significantly degrade the performance.

C Our Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm

We present our proposed rank selection enabled low-rank SVD training algorithm in detail, as illustrated in Algorithms 3, 4,
and 5.

Algorithm 3: Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm

Input: full-rank parameters U, 32, V, loss error tolerance ¢, stop searching precision AJ, training epoch £
Output: low-rank parameters Uy, i, Vi
1 Initialize parameters U, 3, V ;
2 e+ 1;
3 while e < E do
4 Update U, X2, V based on loss function L(U, X, V) with an appropriate optimizer and extract the learning loss
Lr(U,%,V);// Lo(U,V) and Lr(X¥) are not used in the next-step rank
selection
5 Uy, 3, Vi <+ RankSelection(U, X, V, e, Ad, L(U, X, V));
6 U,3, YV U, X, Vi, // Use truncated models for the next round of training
7 e<e+1;

s return Uy, X, Vi

Algorithm 4: Rank Selection Function

1 Function RankSelection (U, X, V, ¢, AS, Lr(U, X, V)):
floss « Lp(U, X, V);
I+ 0u+ 1,0+ (I+u)/2;
while || — u| > Ad or |floss — loss| > e do
Uy, Xi, Vi, < Truncation(U,X,V,0);
loss + LT(uk, >k, vk)’
if | floss — loss| < € then
| 160 (I+u)/2;
else
| w050 « (I+u)/2;

return U, X, Vi ;

[NN T N N

—
=

—
-

Algorithm 5: Truncation Function

1 Function Truncation (U, X, V, §):
2 U, X, Vi — O
3 | foreachU'cU, X' e X, VieVdo
4 k! + argmax, {k|ol /ot > §};
L Truncate top-k! vectors from U, &', V! to get U}, !, V), and add into Uy, Ty, Vi
6 return U, X, Vi

	Introduction
	Related Work
	Low-Rank Training
	Rank Selection

	Preliminaries
	Problem Formulation
	Low-Rank Training
	Strategy 1: Two-Step Low-Rank Training
	Strategy 2: One-Step Low-Rank Training

	SVD Matrix Factorization and Low-Rank Approximations

	Our Approach
	A Theoretical Analysis of Loss Error Bounds under Layer-Wise Rank-k Approximation
	Independent Layer-Wise Rank Selection
	Our Integrated Solution: Rank Selection Enabled Low-Rank SVD Training

	Performance Evaluation
	Experimental Setup
	Correlation Between the Training Loss Error Bound and Rank Selection
	Analysis of During-Training Rank Selections
	Effectiveness and Superiority of Our Solution

	Final Remarks
	Appendix
	Proof of Theorems 1, 2, and 3
	Statistical Analysis of Our Pilot Study in Section 4.1
	Our Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm

