

Appendix for the Paper

“Integrating Independent Layer-Wise Rank Selection with Low-Rank SVD Training for Model Compression: A Theory-Driven Approach”

A Proof of Theorems 1, 2, and 3

Proposition 1 (Theorem 4.2 [Wright and Ma, 2022]). *Let $\mathbf{W} \in \mathbb{R}^{m \times n}$ be a matrix, and $r = \text{rank}(\mathbf{W})$. \mathbf{W} can be decomposed as $\mathbf{U}\Sigma\mathbf{V}^T$, where $\mathbf{U} \in \mathbb{R}^{m \times r}$ and $\mathbf{V} \in \mathbb{R}^{n \times r}$, such that $\mathbf{U}\mathbf{U}^T = \mathbf{I}$ and $\mathbf{V}\mathbf{V}^T = \mathbf{I}$, $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix, i.e., $\Sigma = \text{diag}(\sigma)$, $\sigma = [\sigma_1, \sigma_2, \dots, \sigma_r]$, and $\sigma_k (k \in [r])$ are singular values of \mathbf{W} , where $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$. Then, we have $\mathbf{W} = \sum_{i=1}^r \sigma_i \mathbf{U}_{:,i} \mathbf{V}_{i,:}^T$.*

Lemma 1 (Eckart–Young–Mirsky Theorem [Golub *et al.*, 1987]). *Let $\mathbf{W} \in \mathbb{R}^{m \times n}$ be a matrix, and $r = \text{rank}(\mathbf{W})$. Following the same settings in Proposition 1, we define \mathbf{W}_k to be the best rank- k approximation to \mathbf{W} in the spectral norm, i.e., $\mathbf{W}_k = \mathbf{U}_k \Sigma_k \mathbf{V}_k^T = \sum_{i=1}^k \sigma_i \mathbf{U}_{:,i} \mathbf{V}_{i,:}^T$, where $\mathbf{U}_k, \Sigma_k, \mathbf{V}_k$ are top- k vectors truncated from $\mathbf{U}, \Sigma, \mathbf{V}$. Then, we have $\|\mathbf{W} - \mathbf{W}_k\|_2 = \sigma_{k+1}$, where $\|\cdot\|_2$ stands for the spectral norm.*

Proof. We have

$$\begin{aligned}
 \|\mathbf{W} - \mathbf{W}_k\|_2 &= \left\| \sum_{i=1}^r \sigma_i \mathbf{V}_{i,:} \mathbf{U}_{:,i}^T - \sum_{i=1}^k \sigma_i \mathbf{V}_{i,:} \mathbf{U}_{:,i}^T \right\|_2 \\
 &= \left\| \sum_{i=k+1}^r \sigma_i \mathbf{V}_{i,:} \mathbf{U}_{:,i}^T \right\|_2 \\
 &= \sigma_{k+1}
 \end{aligned}
 \tag{Proposition 1}$$

(The definition of spectral norm)

□

Theorem 1 (The output difference bound for rank- k approximation over L -layer neural networks). *We denote a^l to be the activation function for the l -th layer, and assume a^l is ρ_l -Lipschitz and $a^l(0) = 0$ for all $l \in [1, L]$. Let X^0 be the initial input vector, X^l and X_k^l be the output vectors as a result of passing the full-rank matrix \mathbf{W}^l and low-rank matrix \mathbf{W}_k^l through the l -th layer, respectively, and σ_i^l be the i -th singular value of \mathbf{W}^l . We define k^l such that the top k^l largest singular values of the full-rank matrix \mathbf{W}^l are kept in the corresponding low-rank SVD approximated matrix \mathbf{W}_k^l in layer l . Then, the output difference from rank- k approximation over L -layer feed-forward networks $\|X^L - X_k^L\|_2$ is upper-bounded by $\left(\prod_{l=1}^L \rho_l \sigma_1^l\right) \left(\sum_{l=1}^L \frac{\sigma_{k^l+1}^l}{\sigma_1^l}\right) \|X^0\|_2$.*

Proof. For the output difference at layer $l + 1$, we have

$$\begin{aligned}
 \|X^{l+1} - X_k^{l+1}\|_2 &= \|a^{l+1}(\mathbf{W}^{l+1}X^l) - a^{l+1}(\mathbf{W}_k^{l+1}X_k^l)\|_2 \\
 &\leq \rho_{l+1} \|\mathbf{W}^{l+1}X^l - \mathbf{W}_k^{l+1}X_k^l\|_2 \\
 &\leq \rho_{l+1} \|\mathbf{W}^{l+1}X^l - \mathbf{W}_k^{l+1}X^l + \mathbf{W}_k^{l+1}X^l - \mathbf{W}_k^{l+1}X_k^l\|_2 \\
 &\leq \rho_{l+1} \|\mathbf{W}^{l+1}X^l - \mathbf{W}_k^{l+1}X^l\|_2 + \rho_{l+1} \|\mathbf{W}_k^{l+1}X^l - \mathbf{W}_k^{l+1}X_k^l\|_2 \\
 &\leq \rho_{l+1} \|\mathbf{W}^{l+1} - \mathbf{W}_k^{l+1}\|_2 \cdot \|X^l\|_2 + \rho_{l+1} \|\mathbf{W}_k^{l+1}\|_2 \cdot \|X^l - X_k^l\|_2 \\
 &\leq \rho_{l+1} \sigma_{k^{l+1}+1}^{l+1} \|X^l\|_2 + \rho_{l+1} \sigma_1^{l+1} \cdot \|X^l - X_k^l\|_2
 \end{aligned}
 \tag{Lemma 1}$$

Also, we notice that,

$$\|X^l\|_2 \leq \left(\prod_{i=1}^l \rho_i \|\mathbf{W}^i\|_2 \right) \|X^0\|_2 = \left(\prod_{i=1}^l \rho_i \sigma_1^i \right) \|X^0\|_2.$$

If we let $c_{l+1} = \rho_{l+1} \sigma_{k^{l+1}+1}^{l+1} \left(\prod_{i=1}^l \rho_i \sigma_1^i \right)$ and $d_{l+1} = \rho_{l+1} \sigma_1^{l+1}$, then we have,

$$\|X^{l+1} - X_k^{l+1}\|_2 \leq c_{l+1} \|X^0\|_2 + d_{l+1} \|X^l - X_k^l\|_2.$$

By induction over L layers, we have,

$$\begin{aligned}
\|X^L - X_k^L\|_2 &\leq c_L \|X^0\|_2 + d_L \|X^{L-1} - X_k^{L-1}\|_2 \\
&\leq c_L \|X^0\|_2 + d_L (c_{L-1} \|X^0\|_2 + d_{L-1} \|X^{L-2} - X_k^{L-2}\|_2) \\
&= (c_L + d_L c_{L-1}) \|X^0\|_2 + d_L d_{L-1} \|X^{L-2} - X_k^{L-2}\|_2 \\
&\leq (c_L + d_L c_{L-1} + d_L d_{L-1} c_{L-2}) \|X^0\|_2 + d_L d_{L-1} d_{L-2} \|X^{L-3} - X_k^{L-3}\|_2 \\
&\quad \dots \\
&\leq \left(c_L + d_L c_{L-1} + d_L d_{L-1} c_{L-2} + \dots + \left(\prod_{l=0}^{L-2} d_{L-l} \right) c_1 \right) \|X^0\|_2 + \left(\prod_{l=1}^{L-1} d_{L-l} \right) \|X^0 - X^0\|_2 \\
&= \left(c_L + d_L c_{L-1} + d_L d_{L-1} c_{L-2} + \dots + \left(\prod_{l=0}^{L-2} d_{L-l} \right) c_1 \right) \|X^0\|_2 \\
&= \left(\prod_{l=1}^L \rho_l \sigma_1^l \right) \left(\sum_{l=1}^L \frac{\sigma_{k^l+1}^l}{\sigma_1^l} \right) \|X^0\|_2
\end{aligned}$$

□

Theorem 2 (The loss error bound from rank- k approximation in classification problems). *Following the settings in Theorem 1, we consider a C -class classification problem. Let $X_i^L \in \mathbb{R}^C$ and $X_{i,k}^L \in \mathbb{R}^C$ be the output logits when feeding a input X_i^0 sampled from the training dataset \mathcal{D}^{tr} , e.g., $\mathcal{D}^{tr} = \{X_i^0, y_i\}_{i=1}^R$, from the full-rank parameter space \mathcal{W} and low-rank parameter space \mathcal{W}_k , respectively. Particularly, $\mathcal{W} = \{\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^L\}$, $\mathcal{W}_k = \{\mathbf{W}_k^1, \mathbf{W}_k^2, \dots, \mathbf{W}_k^L\}$, $X_i^L = f_{\mathcal{W}}(X_i^0)$, $X_{i,k}^L = f_{\mathcal{W}_k}(X_{i,k}^0)$, and $\|X_i^0\|_2 \leq B$, for $\forall i \in [1, R]$. Let $z_i = \text{softmax}(X_i^L)$ and $z_{i,k} = \text{softmax}(X_{i,k}^L)$, where softmax is the softmax function. We consider the cross-entropy function as the loss function, i.e., $g(z, y) = -y^T \log(z)$.*

Let $L(\mathcal{W}; X_i^0) = g(z_i, y_i)$ and $L(\mathcal{W}_k; X_i^0) = g(z_{i,k}, y_i)$. Now, we set $\frac{\sigma_{k^l+1}^l}{\sigma_1^l} < \delta$, $\forall l \in [1, L]$. Then, we have, for $\forall \epsilon > 0$, $\exists \delta = \frac{\epsilon}{\sqrt{2}BL(\prod_{l=1}^L \rho_l \sigma_1^l)}$, s.t. $|L(\mathcal{W}; \mathcal{D}^{tr}) - L(\mathcal{W}_k; \mathcal{D}^{tr})| < \epsilon$.

Proof. First, we define $\frac{\partial L(\mathcal{W}, X_i^0)}{\partial x} \in \mathbb{R}^C$ to be the partial derivative of $L(\mathcal{W}, X_i^0)$ with respect to the output layer X_k^L , for the given input X_i^0 . Then, we have

$$\left\| \frac{\partial L(\mathcal{W}, X_i^0)}{\partial x} \right\|_2 = \|z_i - y_i\|_2.$$

Without loss of generality, for $z_i = [z_{i,1}, \dots, z_{i,C}] \in \mathbb{R}^C$, $y_i = [y_{i,1}, \dots, y_{i,C}] \in \mathbb{R}^C$, we assume $y_{i,c} = 0$, where $c \in [1, C-1]$ and $y_{i,C} = 1$ and $z_{i,1} + \dots + z_{i,C} = 1$, where $z_{i,j} \in [0, 1], \forall j \in [1, C]$. Then

$$\begin{aligned}
\left\| \frac{\partial L(\mathcal{W}, X_i^0)}{\partial x} \right\|_2 &= \|z_i - y_i\|_2 \\
&= \sqrt{(z_{i,1} - y_{i,1})^2 + (z_{i,2} - y_{i,2})^2 + \dots + (z_{i,C} - y_{i,C})^2} \\
&= \sqrt{z_{i,1}^2 + z_{i,2}^2 + \dots + z_{i,C-1}^2 + (z_{i,C} - 1)^2} \\
&= \sqrt{z_{i,1}^2 + \dots + z_{i,C-1}^2 + z_{i,C}^2 - 2z_{i,C} + 1} \\
&= \sqrt{z_{i,1}^2 + \dots + z_{i,C-1}^2 + z_{i,C}^2 - 2(z_{i,1} + \dots + z_{i,C})z_{i,C} + 1} \\
&= \sqrt{(z_{i,1} - z_{i,C})^2 + \dots + (z_{i,C-1} - z_{i,C})^2 - Cz_{i,C}^2 + 1} \\
&\leq \sqrt{(z_{i,1} + \dots + z_{i,C-1} - (C-1)z_{i,C})^2 - Cz_{i,C}^2 + 1} \\
&\quad (\text{The equality case holds when } (z_{i,j} - z_{i,C})(z_{i,j'} - z_{i,C}) = 0 \text{ for } j, j' \in [1, C-1]) \\
&= \sqrt{(1 - Cz_{i,C})^2 - Cz_{i,C}^2 + 1} \\
&\leq \sqrt{2} \quad (\text{The equality case holds when } z_{i,C} = 0)
\end{aligned}$$

Overall, the equality case occurs when $z_{i,j} = 1$ if $j \neq C$ and all rest $z_{i,j'}$ are 0 if $j' \neq j$ and $j' \in [1, C]$.

Let $\delta = \frac{\epsilon}{\sqrt{2}BL(\prod_{l=1}^L \rho_l \sigma_1^l)}$, where $\|X_i^0\|_2 \leq B$ and $\frac{\sigma_{k^l+1}^l}{\sigma_1^l} < \delta, \forall l \in [L]$. With Lagrange's mean value theorem, we have

$$\begin{aligned} |L(\mathbf{W}; X_i^0) - L(\mathbf{W}_k; X_i^0)| &\leq \max_{\substack{x \in tX_k^L + (1-t)X^L \\ t \in [0, 1]}} \left\{ \left\| \frac{\partial L}{\partial x} \right\|_2 \right\} \|X^L - X_k^L\|_2 \\ &\leq \sqrt{2} \|X^L - X_k^L\|_2 \\ &\leq \sqrt{2} \|X_i^0\|_2 \sum_{l=1}^L \frac{\sigma_{k^l+1}^l}{\sigma_1^l} \left(\prod_{l=1}^L \rho_l \sigma_1^l \right) \\ &< \sqrt{2} B \delta L \left(\prod_{l=1}^L \rho_l \sigma_1^l \right) = \epsilon. \end{aligned}$$

Finally, $|L(\mathbf{W}; \mathcal{D}^{tr}) - L(\mathbf{W}_k; \mathcal{D}^{tr})| \leq \frac{1}{R} \sum_{i=1}^R |L(\mathbf{W}; X_i^0) - L(\mathbf{W}_k; X_i^0)| < \epsilon$. \square

Theorem 3 (The loss error bound from rank- k approximation in regression problems). *Following the settings in Theorem 1, we consider a regression problem. Let X_i^L and $X_{i,k}^L$ be the output at layer L when feeding a input X_i^0 sampled from the training dataset \mathcal{D}^{tr} , e.g., $\mathcal{D}^{tr} = \{X_i^0, y_i\}_{i=1}^R$, from the full-rank parameter space \mathbf{W} and low-rank parameter space \mathbf{W}_k , respectively. Particularly, $\mathbf{W} = \{\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^L\}$, $\mathbf{W}_k = \{\mathbf{W}_k^1, \mathbf{W}_k^2, \dots, \mathbf{W}_k^L\}$, $X_i^L = f_{\mathbf{W}}(X_i^0)$, $X_{i,k}^L = f_{\mathbf{W}_k}(X_{i,k}^0)$, and $\|X_i^0\|_2 \leq B$, for $\forall i \in [1, R]$. We consider the loss function as $g(z, y) = \|z - y\|_2$. Let $L(\mathbf{W}; X_i^0) = g(X_i^L, y_i)$ and $L(\mathbf{W}_k; X_i^0) = g(X_{i,k}^L, y_i)$. Now, we set $\frac{\sigma_{k^l+1}^l}{\sigma_1^l} < \delta, \forall l \in [1, L]$. Then, we have, for $\forall \epsilon > 0$, $\exists \delta = \frac{\epsilon}{BL(\prod_{l=1}^L \rho_l \sigma_1^l)}$, s.t. $|L(\mathbf{W}; \mathcal{D}^{tr}) - L(\mathbf{W}_k; \mathcal{D}^{tr})| < \epsilon$.*

Proof. Note that

$$\begin{aligned} |L(\mathbf{W}; X_i^0) - L(\mathbf{W}_k; X_i^0)| &= | \|X_i^L - y_i\|_2 - \|X_{i,k}^L - y_i\|_2 | \\ &\leq \|(X_i^L - y_i) - (X_{i,k}^L - y_i)\|_2 \\ &= \|X_i^L - X_{i,k}^L\|_2. \end{aligned}$$

Let $\delta = \frac{\epsilon}{BL\sqrt{2}(\prod_{l=1}^L \rho_l \sigma_1^l)}$, where $\|X_i^0\|_2 \leq B$ and $\frac{\sigma_{k^l+1}^l}{\sigma_1^l} < \delta, \forall l \in [L]$. We have

$$\begin{aligned} |L(\mathbf{W}; X_i^0) - L(\mathbf{W}_k; X_i^0)| &\leq \|X^L - X_k^L\|_2 \\ &\leq \|X_i^0\|_2 \sum_{l=1}^L \frac{\sigma_{k^l+1}^l}{\sigma_1^l} \left(\prod_{l=1}^L \rho_l \sigma_1^l \right) \\ &< B \delta L \left(\prod_{l=1}^L \rho_l \sigma_1^l \right) = \epsilon. \end{aligned}$$

Finally, $|L(\mathbf{W}; \mathcal{D}^{tr}) - L(\mathbf{W}_k; \mathcal{D}^{tr})| \leq \frac{1}{R} \sum_{i=1}^R |L(\mathbf{W}; X_i^0) - L(\mathbf{W}_k; X_i^0)| < \epsilon$. \square

B Statistical Analysis of Our Pilot Study in Section 4.1

	Full-Rank	Low-Rank				
ϵ	0	0.17	0.23	0.28	0.33	0.56
δ	0	0.015	0.021	0.025	0.03	0.047
k^1 (Layer 1)	2	2	2	2	2	2
k^2 (Layer 2)	100	9	8	7	6	3
k^3 (Layer 3)	3	3	3	3	3	3

Table 4: Statistics of our pilot study.

To validate the feasibility of identifying δ based on our derived ϵ - δ correlation and determining the optimal k^l , we conduct a pilot study using a simple 3-layer feed-forward neural network for a ternary classification problem. Particularly, the input is in 2 dimensions; the output is in 3 dimensions; $\mathbf{W}^1 \in \mathbb{R}^{2 \times 100}$, $\mathbf{W}^2 \in \mathbb{R}^{100 \times 100}$, and $\mathbf{W}^3 \in \mathbb{R}^{100 \times 3}$. Here, $\mathbf{W}^1, \mathbf{W}^2,$

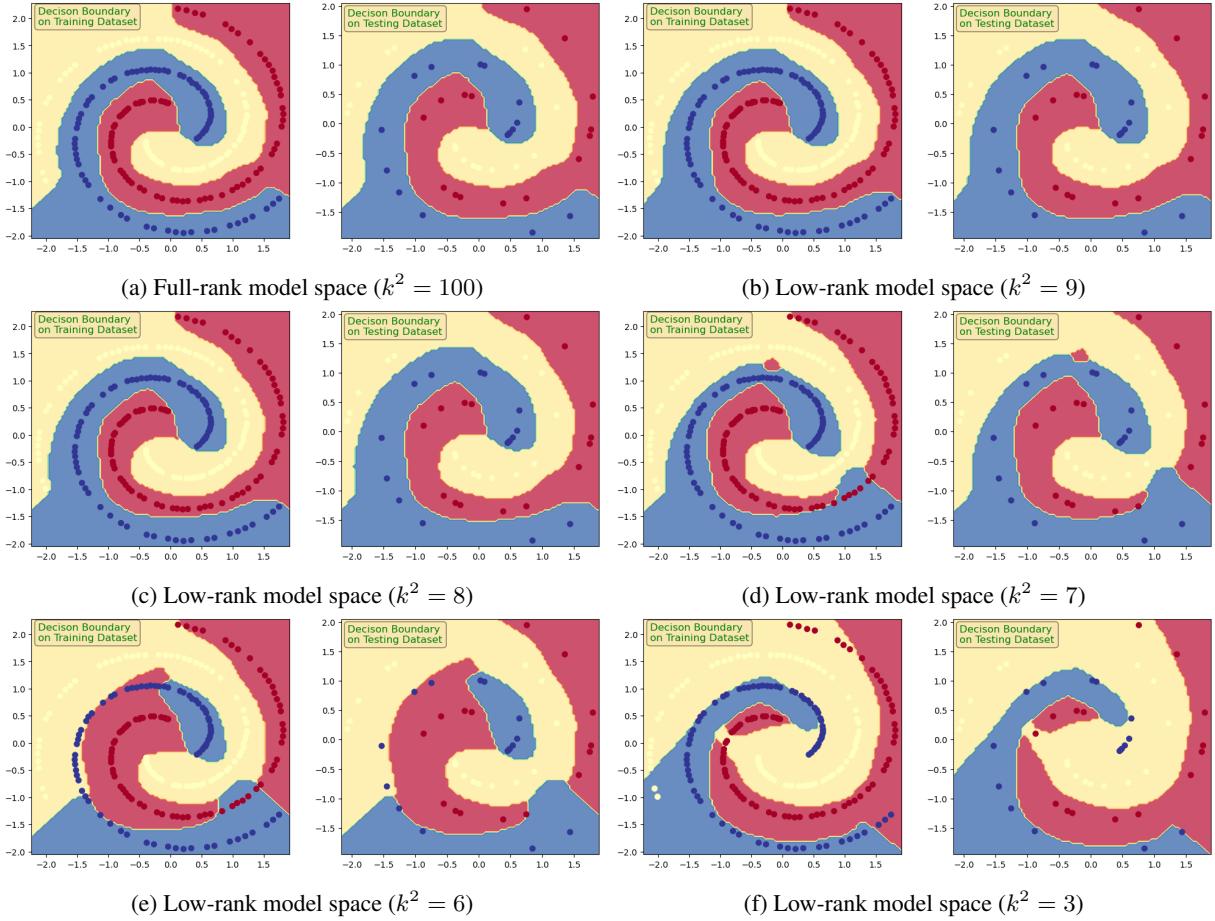


Figure 7: A visualization of the decision boundaries on the training dataset (left column) and testing dataset (right column) through different rank selections.

and \mathbf{W}^3 are either column full-rank or row full-rank. It means that $\text{rank}(\mathbf{W}^1) = 2$, $\text{rank}(\mathbf{W}^2) = 100$, and $\text{rank}(\mathbf{W}^3) = 3$. Since there is not much room to tune k in \mathbf{W}^1 and \mathbf{W}^3 , our major focus is on tuning k in \mathbf{W}^2 . The activation functions in the first and second layers are both the ReLU functions. The output from the third layer will be fed into a softmax function to get the prediction probabilities. The loss function is the cross-entropy function. Fig. 7 visualizes the decision boundary on the training (left column in each sub-figure) and testing dataset (right column in each sub-figure) through different rank selections with more details. Table 4 lists the ϵ , δ , and selected k for each layer. As we can find, as the loss error bound ϵ increases, the corresponding δ also increases, indicating that more information is truncated as smaller values of k^l are assigned to each layer, respectively. This truncation leads to underfitting in the low-rank model, preventing it from effectively capturing the patterns of the original full-rank model. Particularly, according to the results in Fig. 7, the key turning point in selecting k^2 happens from 8 to 7. We can find the decision boundary's shape has appeared different patterns compared with that in larger k^2 . To some extent, when $k^2 = 8$, it represents the smallest k^l , which is sufficient to retain the full-rank model's representational capacity. Further searching would significantly degrade the performance.

C Our Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm

We present our proposed rank selection enabled low-rank SVD training algorithm in detail, as illustrated in Algorithms 3, 4, and 5.

Algorithm 3: Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm

Input: full-rank parameters $\mathcal{U}, \Sigma, \mathcal{V}$, loss error tolerance ϵ , stop searching precision $\Delta\delta$, training epoch E
Output: low-rank parameters $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k$

- 1 Initialize parameters $\mathcal{U}, \Sigma, \mathcal{V}$;
- 2 $e \leftarrow 1$;
- 3 **while** $e \leq E$ **do**
 - 4 Update $\mathcal{U}, \Sigma, \mathcal{V}$ based on loss function $L(\mathcal{U}, \Sigma, \mathcal{V})$ with an appropriate optimizer and extract the learning loss $L_T(\mathcal{U}, \Sigma, \mathcal{V})$; // $L_O(\mathcal{U}, \mathcal{V})$ and $L_R(\Sigma)$ are not used in the next-step rank selection
 - 5 $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k \leftarrow \text{RankSelection}(\mathcal{U}, \Sigma, \mathcal{V}, \epsilon, \Delta\delta, L_T(\mathcal{U}, \Sigma, \mathcal{V}))$;
 - 6 $\mathcal{U}, \Sigma, \mathcal{V} \leftarrow \mathcal{U}_k, \Sigma_k, \mathcal{V}_k$; // Use truncated models for the next round of training
 - 7 $e \leftarrow e + 1$;
- 8 **return** $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k$;

Algorithm 4: Rank Selection Function

- 1 **Function** RankSelection($\mathcal{U}, \Sigma, \mathcal{V}, \epsilon, \Delta\delta, L_T(\mathcal{U}, \Sigma, \mathcal{V})$):
- 2 $floss \leftarrow L_T(\mathcal{U}, \Sigma, \mathcal{V})$;
- 3 $l \leftarrow 0; u \leftarrow 1; \delta \leftarrow (l + u)/2$;
- 4 **while** $|l - u| \geq \Delta\delta$ or $|floss - loss| \geq \epsilon$ **do**
 - 5 $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k \leftarrow \text{Truncation}(\mathcal{U}, \Sigma, \mathcal{V}, \delta)$;
 - 6 $loss \leftarrow L_T(\mathcal{U}_k, \Sigma_k, \mathcal{V}_k)$;
 - 7 **if** $|floss - loss| < \epsilon$ **then**
 - 8 $l \leftarrow \delta; \delta \leftarrow (l + u)/2$;
 - 9 **else**
 - 10 $u \leftarrow \delta; \delta \leftarrow (l + u)/2$;
- 11 **return** $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k$;

Algorithm 5: Truncation Function

- 1 **Function** Truncation($\mathcal{U}, \Sigma, \mathcal{V}, \delta$):
- 2 $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k \leftarrow \emptyset$;
- 3 **for** each $\mathcal{U}^l \in \mathcal{U}, \Sigma^l \in \Sigma, \mathcal{V}^l \in \mathcal{V}$ **do**
 - 4 $k^l \leftarrow \text{argmax}_k \{k | \sigma_k^l / \sigma_1^l \geq \delta\}$;
 - 5 Truncate top- k^l vectors from $\mathcal{U}^l, \Sigma^l, \mathcal{V}^l$ to get $\mathcal{U}_k^l, \Sigma_k^l, \mathcal{V}_k^l$, and add into $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k$;
- 6 **return** $\mathcal{U}_k, \Sigma_k, \mathcal{V}_k$
