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A Proof of Theorems 1, 2, and 3
Proposition 1 (Theorem 4.2 [Wright and Ma, 2022]). Let W ∈ Rm×n be a matrix, and r = rank(W ). W can be decomposed
as UΣV T , where U ∈ Rm×r and V ∈ Rn×r, such that UUT = I and V V T = I, Σ ∈ Rr×r is a is diagonal matrix, i.e.,
Σ = diag(σ), σ = [σ1, σ2, . . . , σr], and σk(k ∈ [r]) are singular values of W , where σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then, we
have W =

∑r
i=1 σiU:,iV

T
i,: .

Lemma 1 (Eckart–Young–Mirsky Theorem [Golub et al., 1987]). Let W ∈ Rm×n be a matrix, and r = rank(W ). Following
the same settings in Proposition 1, we define Wk to be the best rank-k approximation to W in the spectral norm, i.e., Wk =

UkΣkV
T
k =

∑k
i=1 σiU:,iV

T
i,: , where Uk,Σk,Vk are top-k vectors truncated from U ,Σ,V . Then, we have ||W −Wk||2 =

σk+1, where || · ||2 stands for the spectral norm.

Proof. We have

||W −Wk||2 = ||
r∑

i=1

σiVi,:U
T
:,i −

k∑
i=1

σiVi,:U
T
:,i||2 (Proposition 1)

= ||
r∑

i=k+1

σiVi,:U
T
:,i||2

= σk+1 (The definition of spectral norm)

Theorem 1 (The output difference bound for rank-k approximation over L-layer neural networks). We denote al to be the
activation function for the l-th layer, and assume al is ρl-Lipschitz and al(0) = 0 for all l ∈ [1, L]. Let X0 be the ini-
tial input vector, X l and X l

k be the output vectors as a result of passing the full-rank matrix W l and low-rank matrix W l
k

through the l-th layer, respectively, and σl
i be the i-th singular value of W l. We define kl such that the top kl largest sin-

gular values of the full-rank matrix W l are kept in the corresponding low-rank SVD approximated matrix W l
k in layer l.

Then, the output difference from rank-k approximation over L-layer feed-forward networks ||XL−XL
k ||2 is upper-bounded by(∏L

l=1 ρlσ
l
1

)(∑L
l=1

σl

kl+1

σl
1

)
||X0||2.

Proof. For the output difference at layer l + 1, we have

||X l+1 −X l+1
k ||2 = ||al+1(W l+1X l)− al+1(W l+1

k X l
k)||2

≤ ρl+1||W l+1X l −W l+1
k X l

k||2
≤ ρl+1||W l+1X l −W l+1

k X l +W l+1
k X l −W l+1

k X l
k||2

≤ ρl+1||W l+1X l −W l+1
k X l||2 + ρl+1||2W l+1

k X l −W l+1
k X l

k||2
≤ ρl+1||W l+1 −W l+1

k ||2 · ||X l||2 + ρl+1||W l+1
k ||2 · ||X l −X l

k||2
≤ ρl+1σ

l+1
kl+1+1

||X l||2 + ρl+1σ
l+1
1 · ||X l −X l

k||2. (Lemma 1)

Also, we notice that,

||X l||2 ≤

(
l∏

i=1

ρi||W i||2

)
||X0||2 =

(
l∏

i=1

ρiσ
i
1

)
||X0||2.

If we let cl+1 = ρl+1σ
l+1
kl+1+1

(∏l
i=1 ρiσ

i
1

)
and dl+1 = ρl+1σ

l+1
1 , then we have,

||X l+1 −X l+1
k ||2 ≤ cl+1||X0||2 + dl+1||X l −X l

k||2.



By induction over L layers, we have,

||XL −XL
k ||2 ≤ cL||X0||2 + dL||XL−1 −XL−1

k ||2
≤ cL||X0||2 + dL

(
cL−1||X0||2 + dL−1||XL−2 −XL−2

k ||2
)

= (cL + dLcL−1) ||X0||2 + dLdL−1||XL−2 −XL−2
k ||2

≤ (cL + dLcL−1 + dLdL−1cL−2) ||X0||2 + dLdL−1dL−2||XL−3 −XL−3
k ||2

. . .

≤

(
cL + dLcL−1 + dLdL−1cL−2 + · · ·+

(
L−2∏
l=0

dL−l

)
c1

)
||X0||2 +

(
L−1∏
l=1

dL−l

)
||X0 −X0||2

=

(
cL + dLcL−1 + dLdL−1cL−2 + · · ·+

(
L−2∏
l=0

dL−l

)
c1

)
||X0||2

=

(
L∏

l=1

ρlσ
l
1

)(
L∑

l=1

σl
kl+1

σl
1

)
||X0||2

Theorem 2 (The loss error bound from rank-k approximation in classification problems). Following the settings in Theorem 1,
we consider a C-class classification problem. Let XL

i ∈ RC and XL
i,k ∈ RC be the output logits when feeding a input X0

i

sampled from the training dataset Dtr, e.g., Dtr = {X0
i , yi}

R

i=1, from the full-rank parameter space W and low-rank param-
eter space Wk, respectively. Particularly, W = {W 1,W 2, . . . ,WL}, Wk = {W 1

k ,W
2
k , . . . ,W

L
k }, XL

i = fW(X0
i ),

XL
i,k = fWk

(X0
i,k), and ||X0

i ||2 ≤ B, for ∀ i ∈ [1, R]. Let zi = softmax(XL
i ) and zi,k = softmax(XL

i,k), where
softmax is the softmax function. We consider the cross-entropy function as the loss function, i.e., g(z, y) = −yT log(z).

Let L(W ;X0
i ) = g(zi, yi) and L(Wk;X

0
i ) = g(zi,k, yi). Now, we set

σl

kl+1

σl
1

< δ, ∀ l ∈ [1, L]. Then, we have, for ∀ ϵ > 0,

∃ δ = ϵ√
2BL(

∏L
l=1 ρlσl

1)
, s.t. |L(W ;Dtr)− L(Wk;Dtr)| < ϵ.

Proof. First, we define ∂L(W,X0
i )

∂x ∈ RC to be the partial derivative of L(W , X0
i ) with respect to the output layer XL

k , for the
given input X0

i . Then, we have ∣∣∣∣∣∣∣∣∂L(W , X0
i )

∂x

∣∣∣∣∣∣∣∣
2

= ||zi − yi||2.

Without loss of generality, for zi = [zi,1, . . . , zi,C ] ∈ RC , yi = [yi,1, . . . , yi,C ] ∈ RC , we assume yi,c = 0, where c ∈
[1, C − 1] and y1,C = 1 and zi,1 + · · ·+ zi,C = 1, where zi,j ∈ [0, 1],∀ j ∈ [1, C], Then∣∣∣∣∣∣∣∣∂L(W , X0

i )

∂x

∣∣∣∣∣∣∣∣
2

= ||zi − yi||2

=
√
(zi,1 − yi,1)2 + (zi,2 − yi,2)2 + · · ·+ (zi,C − yi,C)2

=
√
z2i,1 + z2i,2 + · · ·+ z2i,C−1 + (zi,C − 1)2

=
√
z2i,1 + · · ·+ z2i,C−1 + z2i,C − 2zi,C + 1

=
√
z2i,1 + · · ·+ z2i,C−1 + z2i,C − 2(zi,1 + · · ·+ zi,C)zi,C + 1

=
√
(zi,1 − zi,C)2 + · · ·+ (zi,C−1 − zi,C)2 − Cz2i,C + 1

≤
√
(zi,1 + · · ·+ zi,C−1 − (C − 1)zi,C)2 − Cz2i,C + 1

(The equality case holds when (zi,j − zi,C)(zi,j′ − zi,C) = 0 for j, j′ ∈ [1, C − 1])

=
√
(1− Czi,C)2 − Cz2i,C + 1

≤
√
2 (The equality case holds when zi,C = 0)



Overall, the equality case occurs when zi,j = 1 if j ̸= C and all rest zi,j′ are 0 if j′ ̸= j and j′ ∈ [1, C].

Let δ = ϵ√
2BL(

∏L
l=1 ρlσl

1)
, where ||X0

i ||2 ≤ B and
σl

kl+1

σl
1

< δ, ∀ l ∈ [L]. With Lagrange’s mean value theorem, we have

|L(W ;X0
i )− L(Wk;X

0
i )| ≤

max
x∈tXL

k +(1−t)XL

t∈[0,1]

{∣∣∣∣∣∣∣∣∂L∂x
∣∣∣∣∣∣∣∣
2

}
||XL −XL

k ||2

≤
√
2||XL −XL

k ||2

≤
√
2||X0

i ||2
L∑

l=1

σl
kl+1

σl
1

(
L∏

l=1

ρlσ
l
1

)

<
√
2BδL

(
L∏

l=1

ρlσ
l
1

)
= ϵ.

Finally, |L(W ;Dtr)− L(Wk;Dtr)| ≤ 1
R

∑R
i=1 |L(W ;X0

i )− L(Wk;X
0
i )| < ϵ.

Theorem 3 (The loss error bound from rank-k approximation in regression problems). Following the settings in Theorem 1,
we consider a regression problem. Let XL

i and XL
i,k be the output at layer L when feeding a input X0

i sampled from the

training dataset Dtr, e.g., Dtr = {X0
i , yi}

R

i=1, from the full-rank parameter space W and low-rank parameter space Wk,
respectively. Particularly, W = {W 1,W 2, . . . ,WL}, Wk = {W 1

k ,W
2
k , . . . ,W

L
k }, XL

i = fW(X0
i ), X

L
i,k = fWk

(X0
i,k),

and ||X0
i ||2 ≤ B, for ∀ i ∈ [1, R]. We consider the loss function as g(z, y) = ||z − y||2. Let L(W ;X0

i ) = g(XL
i , yi) and

L(Wk;X
0
i ) = g(XL

i,k, yi). Now, we set
σl

kl+1

σl
1

< δ, ∀ l ∈ [1, L]. Then, we have, for ∀ ϵ > 0, ∃ δ = ϵ

BL(
∏L

l=1 ρlσl
1)

, s.t.

|L(W ;Dtr)− L(Wk;Dtr)| < ϵ.

Proof. Note that

|L(W ;X0
i )− L(Wk;X

0
i )| =

∣∣ ||XL
i − yi||2 − ||XL

i,k − yi||2
∣∣

≤ ||(XL
i − yi)− (XL

i,k − yi)||2
= ||XL

i −XL
i,k||2.

Let δ = ϵ

BL
√
2(

∏L
l=1 ρlσl

1)
, where ||X0

i ||2 ≤ B and
σl

kl+1

σl
1

< δ, ∀ l ∈ [L]. We have

|L(W ;X0
i )− L(Wk;X

0
i )| ≤ ||XL −XL

k ||2

≤ ||X0
i ||2

L∑
l=1

σl
kl+1

σl
1

(
L∏

l=1

ρlσ
l
1

)

< BδL

(
L∏

l=1

ρlσ
l
1

)
= ϵ.

Finally, |L(W ;Dtr)− L(Wk;Dtr)| ≤ 1
R

∑R
i=1 |L(W ;X0

i )− L(Wk;X
0
i )| < ϵ.

B Statistical Analysis of Our Pilot Study in Section 4.1

Full-Rank Low-Rank
ϵ 0 0.17 0.23 0.28 0.33 0.56
δ 0 0.015 0.021 0.025 0.03 0.047

k1 (Layer 1) 2 2 2 2 2 2
k2 (Layer 2) 100 9 8 7 6 3
k3 (Layer 3) 3 3 3 3 3 3

Table 4: Statistics of our pilot study.

To validate the feasibility of identifying δ based on our derived ϵ-δ correlation and determining the optimal kl, we conduct
a pilot study using a simple 3-layer feed-forward neural network for a ternary classification problem. Particularly, the input
is in 2 dimensions; the output is in 3 dimensions; W 1 ∈ R2×100, W 2 ∈ R100×100, and W 1 ∈ R100×3. Here, W 1, W 2,



(a) Full-rank model space (k2 = 100) (b) Low-rank model space (k2 = 9)

(c) Low-rank model space (k2 = 8) (d) Low-rank model space (k2 = 7)

(e) Low-rank model space (k2 = 6) (f) Low-rank model space (k2 = 3)

Figure 7: A visualization of the decision boundaries on the training dataset (left column) and testing dataset (right column) through different
rank selections.

and W 3 are either column full-rank or row full-rank. It means that rank(W 1) = 2, rank(W 2) = 100, and rank(W 3) = 3.
Since there is not much room to tune k in W 1 and W 3, our major focus is on tuning k in W 2. The activation functions in
the first and second layers are both the ReLU functions. The output from the third layer will be fed into a softmax function to
get the prediction probabilities. The loss function is the cross-entropy function. Fig. 7 visualizes the decision boundary on the
training (left column in each sub-figure) and testing dataset (right column in each sub-figure) through different rank selections
with more details. Table 4 lists the ϵ, δ, and selected k for each layer. As we can find, as the loss error bound ϵ increases, the
corresponding δ also increases, indicating that more information is truncated as smaller values of kl are assigned to each layer,
respectively. This truncation leads to underfitting in the low-rank model, preventing it from effectively capturing the patterns of
the original full-rank model. Particularly, according to the results in Fig. 7, the key turning point in selecting k2 happens from
8 to 7. We can find the decision boundary’s shape has appeared different patterns compared with that in larger k2. To some
extent, when k2 = 8, it represents the smallest kl, which is sufficient to retain the full-rank model’s representational capacity.
Further searching would significantly degrade the performance.

C Our Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm
We present our proposed rank selection enabled low-rank SVD training algorithm in detail, as illustrated in Algorithms 3, 4,
and 5.



Algorithm 3: Proposed Rank Selection Enabled Low-Rank SVD Training Algorithm
Input: full-rank parameters U , Σ, V , loss error tolerance ϵ, stop searching precision ∆δ, training epoch E
Output: low-rank parameters Uk, Σk, Vk

1 Initialize parameters U , Σ, V ;
2 e← 1 ;
3 while e ≤ E do
4 Update U , Σ, V based on loss function L(U ,Σ,V) with an appropriate optimizer and extract the learning loss

LT (U ,Σ,V); // LO(U ,V) and LR(Σ) are not used in the next-step rank
selection

5 Uk, Σk, Vk ← RankSelection(U , Σ, V , ϵ, ∆δ, LT (U , Σ,V));
6 U , Σ, V ← Uk, Σk, Vk; // Use truncated models for the next round of training
7 e← e+ 1;
8 return Uk, Σk, Vk ;

Algorithm 4: Rank Selection Function
1 Function RankSelection(U , Σ, V , ϵ, ∆δ, LT (U , Σ, V)):
2 floss← LT (U ,Σ,V);
3 l← 0; u← 1; δ ← (l + u)/2;
4 while |l − u| ≥ ∆δ or |floss− loss| ≥ ϵ do
5 Uk, Σk, Vk ← Truncation(U ,Σ,V , δ);
6 loss← LT (Uk, Σk, Vk);
7 if |floss− loss| < ϵ then
8 l← δ; δ ← (l + u)/2;
9 else

10 u← δ; δ ← (l + u)/2;

11 return Uk, Σk, Vk ;

Algorithm 5: Truncation Function
1 Function Truncation(U ,Σ,V , δ):
2 Uk, Σk, Vk ← Ø;
3 for each U l ∈ U , Σl ∈ Σ, V l ∈ V do
4 kl ← argmaxk{k|σl

k/σ
l
1 ≥ δ};

5 Truncate top-kl vectors from U l,Σl,V l to get U l
k,Σ

l
k,V

l
k , and add into Uk, Σk, Vk ;

6 return Uk, Σk, Vk
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